Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 5 Đại số tổ hợp sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn đáp án đúng

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.

    Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: 6!.6! cách.

    Trường hợp 2: Ngược lại có 6!.6! cách.

    Vậy số cách xếp là: 2.6!.6! =
1036800 cách.

  • Câu 2: Thông hiểu

    Tính số cách chọn thành viên

    Một dạ tiệc có 10 nam và 6 nữ giỏi khiêu vũ. Người ta chọn 3 nam và 3 nữ để ghép thành 3 cặp. Hỏi có bao nhêu cách chọn?

    Chọn 3 nam trong 10 nam có C_{10}^{3} cách.

    Chọn 3 nữ trong 6 nữ có C_{6}^{3} cách.

    Ghép 3 nam và 3 nữ để thành 3 cặp có 3! cách.

    Theo quy tắc nhân có: C_{10}^{3}.C_{6}^{3}.3! = 14400 cách chọn.

  • Câu 3: Vận dụng

    Tìm hệ số lớn nhất

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 4: Nhận biết

    Chọn đáp án đúng

    Tính số chỉnh hợp chập 2 của 5 là:

    Số chỉnh hợp chập 2 của 5 là: A_{5}^{2}.

  • Câu 5: Nhận biết

    Số các hoán vị của tập X là

    Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là bao nhiêu?

    Số các hoán vị của 10 phần tử: 10!.

  • Câu 6: Nhận biết

    Tính số con đường có thể đi

    Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?

    Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.

    Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.

    Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: 6.4 = 24 cách

  • Câu 7: Thông hiểu

    Tổng các hệ số của đa thức là

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 8: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 9: Nhận biết

    Chọn khai triển chính xác

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả:

    Ta có: (x + 1)^{4} = x^{4} + 4x^{3} + 6x^{2} +
4x + 1

  • Câu 10: Vận dụng

    Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 11: Vận dụng

    Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 12: Thông hiểu

    Tìm n

    Biết hệ số của số hạng chứa x^{2} trong khai triển (1 + 4x)^{n}3040. Số tự nhiên n bằng bao nhiêu?

    Ta có: (1 + 4x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}(4x)^{k}} = \sum_{k =
0}^{n}{C_{n}^{k}4^{k}x^{k}}.

    Hệ số của số hạng chứa x^{2} là: C_{n}^{2}4^{2}.

    Giả thiết suy ra C_{n}^{2}4^{2} = 3040\Leftrightarrow C_{n}^{2} = 190 \Leftrightarrow \frac{n(n - 1)}{2} = 190\Leftrightarrow n^{2} - n - 380 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}n = 20\ \ (t/m) \ = - 19\ (loai) \\\end{matrix} ight.

  • Câu 13: Nhận biết

    Hỏi có bao nhiêu tập con

    Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là:

    Số tập con gồm 4 phần tử của M là số cách chọn 4 phần tử bất kì trong 10 phần tử của M.

    Do đó số tập con gồm 4 phần tử của MC_{10}^{4}.

  • Câu 14: Nhận biết

    Số loại giao tử của kiểu gen AaBb

    Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

    Số loại giao tử của kiểu gen AaBb

    Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:

    Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.

    => Số loại giao tử của kiểu gen AaBb là 4.

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

  • Câu 16: Thông hiểu

    Tính số cách chọn học sinh

    Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?

    Số cách chọn một bạn nam là: 7 cách

    Số cách chọn một bạn nữ là: 4 cách

    Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: 7.4 = 28 cách chọn.

  • Câu 17: Nhận biết

    Chọn số cách sắp xếp chính xác

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

  • Câu 18: Thông hiểu

    Xác định số tam giác được tạo thành

    Cho hai đường thẳng (d) gồm 5 điểm phân biệt và (d') gồm 7 điểm phân biệt. Biết rằng (d)//(d'). Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?

    Một tam giác được hình thành bởi ba điểm không thẳng hàng.

    TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{1}.C_{7}^{2} (tam giác)

    TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{2}.C_{7}^{1} (tam giác)

    Vậy số tam giác được tạo thành là C_{5}^{1}.C_{7}^{2} + C_{5}^{2}.C_{7}^{1} =
175.

  • Câu 19: Nhận biết

    Chọn công thức sai

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 20: Vận dụng

    Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Cho tập A =
\left\{ 0;1;2;3;4;5;6 ight\}. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Gọi \overline{abcde} là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    + TH1. e = 0. Chọn a,b,c,d \in A\backslash\left\{ 0
ight\}: A_{6}^{4} = 360
\Rightarrowcó 360 số.

    + TH2. e eq 0:Chọn e \in \left\{ 2;4;6 ight\}:3 (cách).

    Chọn a \in A\backslash\left\{ 0;e
ight\}:5 (cách).

    Chọn b,c,d \in A\backslash\left\{ a;e
ight\}: A_{5}^{3} = 60 (cách).

    \Rightarrow3.5.60 = 900 số.

    Vậy có. 900 + 360 = 1260số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo