Tính số kết quả thuận lợi của C
Cho tập hợp
, lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:
Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là:
Đề kiểm tra 15 phút Toán 10 Chương 5 Đại số tổ hợp sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tính số kết quả thuận lợi của C
Cho tập hợp
, lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:
Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là:
Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Cho tập
. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.
Chọn đáp án đúng
Có thể lập được bao nhiêu chữ số có hai chữ số trong đó cả hai chữ số trong số đó đều là số lẻ?
Gọi số có hai chữ số là:
Vì hai chữ số đều là chữ số lẻ nên .
Áp dụng quy tắc nhân ta có: cách.
Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là
Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là
Số cách chọn một bạn nam là 15 cách.
Số cách chọn một bạn nữ là 10 cách.
Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.
Tính cách sắp xếp học sinh
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Chọn đáp án thích hợp
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.
Hỏi có thể lập được bao nhiêu số
Cho các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số khác nhau?
Số cách lập số tự nhiên có chữ số khác nhau từ các chữ số đã cho là số hoán vị của
phần tử, do đó có
.
Có bao nhiêu phương án trả lời?
Một bài trắc nghiệm khách quan có 10 câu hỏi. Mỗi câu hỏi có 4 phương án trả lời. Có bao nhiêu phương án trả lời?
Mỗi câu hỏi có 4 cách chọn phương án trả lời.
Mười câu hỏi sẽ có số cách chọn phương án trả lời là 410.
Khai triển nhị thức
Khai triển nhị thức
ta được kết quả là:
Ta có: .
Tìm n
Cho biết hệ số của
trong khai triển
bằng
.Tìm
.
Ta có: .
Hệ số của trong khai triển bằng
Tìm n
Biết hệ số của số hạng chứa
trong khai triển
là
. Số tự nhiên
bằng bao nhiêu?
Ta có: .
Hệ số của số hạng chứa là:
.
Giả thiết suy ra
Tìm hệ số của số hạng
Cho
là số nguyên dương thỏa mãn
. Tìm hệ số của số hạng chứa
của khai triển biểu thức
.
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là
.
Xác định số cách chọn nhóm học sinh đại diện
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Xác định khoảng chứa nghiệm phương trình
Nghiệm của phương trình
thuộc khoảng nào?
Điều kiện xác định
Ta có:
Vậy nghiệm phương trình thuộc khoảng .
Có bao nhiêu số tự nhiên gồm 5 chữ số thỏa mãn
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Xác định hệ số
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Tính số cách lấy 3 quả cầu
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?
Tổng số quả cầu trong hộp là 5 + 6 = 11
Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử
Vậy số cách thỏa mãn yêu cầu bài toán là (cách).
Tìm hệ số của số hạng
Cho khai triển
với
. Tìm hệ số của số hạng chứa
trong khai triển trên.
Ta có: .
Số hạng chứa ứng với
. Vậy hệ số của số hạng chứa
bằng
.
Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Lập được bao nhiêu tam giác thỏa mãn
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: