Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 5 Đại số tổ hợp sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm các số tự nhiên có 5 chữ số chia hết cho 5

    Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde} ;\left( {a e 0} ight)

    Do số cần tìm chia hết cho 5 => e \in \left\{ {0;5} ight\} => e có 2 cách chọn.

    a có 9 cách chọn

    b, c, d có 10 cách chọn

    => Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.

     Chọn 3 viên bi từ 20 viên bi: C_{20}^3 cách.

  • Câu 3: Vận dụng

    Tìm hệ số của số hạng

    Với n là số nguyên dương thỏa mãn 3C_{n + 1}^{3} -
3A_{n}^{2} = 52(n - 1). Trong khai triển biểu thức \left( x^{3} + 2y^{2} ight)^{n}, gọi T_{k} là số hạng mà tổng số mũ của xy của số hạng đó bằng 34. Hệ số của T_{k} là :

    Điều kiện: n \geq 2, n \in \mathbb{N}^{*}.

    Ta có 3C_{n + 1}^{3} - 3A_{n}^{2} = 52(n
- 1) \Leftrightarrow 3.\frac{(n + 1)!}{3!(n - 2)!} - 3\frac{n!}{(n -
2)!} = 52(n - 1)

    \Leftrightarrow \frac{(n - 1)n(n + 1)}{2}
- 3n(n - 1) = 52(n - 1) \Leftrightarrow n^{2} + n - 6n =
104.

    \Leftrightarrow n^{2} - 5n - 104 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 13 \\
n = - 8 \\
\end{matrix} ight.\  \Leftrightarrow n = 13.

    \left( x^{3} + 2y^{2} ight)^{13} =
\sum_{0}^{13}{C_{13}^{k}\left( x^{3} ight)^{13 - k}\left( 2y^{2}
ight)^{k}} = \sum_{0}^{13}{C_{13}^{k}2^{k}x^{39 -
3k}y^{2k}}.

    Ta có: 39 - 3k + 2k = 34 \Leftrightarrow
k = 5. Vậy hệ số C_{13}^{5}2^{5} =
41184.

  • Câu 4: Nhận biết

    Chọn khai triển đúng

    Chọn đáp án đúng khi khai triển nhị thức (3x - 2y)^{4}?

    Ta có:

    (3x - 2y)^{4} = \sum_{k =
0}^{4}{C_{4}^{k}.(3x)^{4 - k}.( - 2y)^{k}}

    = 81x^{4} - 216x^{3}y + 216x^{2}y^{2} -
96xy^{3} + 16y^{4}

  • Câu 5: Thông hiểu

    Tính các cách sắp xếp thỏa mãn yêu cầu

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn và sách Toán nằm ở giữa?

    Chọn vị trí cho bộ sách Toán có 2 cách

    Sắp xếp 3 bộ sách còn lại có 3! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 quyển sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! Cách

    Sắp xếp 5 quyển sách Sinh có 5! Cách.

    Vậy số cách sắp xếp số sách trên kệ theo từng môn và sách Toán nằm giữa là: 2.3!.3!.2!.4!.5! = 414720 cách.

  • Câu 6: Thông hiểu

    Chọn đáp án đúng

    Một nhóm học sinh gồm 6 nam và 4 nữ. Cần chọn ra một nhóm 5 người gồm cả nam và nữ đi trực nhật. Hỏi có bao nhiêu cách chọn nếu số bạn nữ luôn nhiều hơn số bạn nam.

    Trường hợp 1: 4 nữ, 1 nam

    Chọn 4 nữ từ 4 nữ và 1 nam từ 6 nam, có: C_4^4.C_6^1 = 6 (cách).

    Trường hợp 2: 3 nữ, 2 nam, có: C_4^3.C_6^2 = 60 (cách).

    Vậy có 6+60=66 (cách).

  • Câu 7: Thông hiểu

    Tìm n

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180. Tìm n.

    Ta có (1 + 2x)^{n} = C_{n}^{0} +
C_{n}^{1}.2x + C_{n}^{2}.(2x)^{2} + ... +
C_{n}^{n}(2x)^{n}.

    Hệ số của x^{2} bằng 180 \Leftrightarrow 4.C_{n}^{2} = 180
\Leftrightarrow 4\frac{n!}{2!(n - 2)!} = 180 \Leftrightarrow n(n - 1) =
90

    \Leftrightarrow n^{2} - n - 90 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = - 9(l) \\
n = 10 \\
\end{matrix} ight..

    Vậy n = 10.

  • Câu 8: Thông hiểu

    Tính giá trị biểu thức

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Kết quả của phép tính C_{6}^{2}-C_{6}^{3} là:

     Ta có: C_{6}^{2}-C_{6}^{3} =-5.

  • Câu 10: Vận dụng

    Có bao nhiêu số tự nhiên gồm 5 chữ số thỏa mãn

    Có bao nhiêu số tự nhiên gồm 5 chữ số lớn hơn 4 và đôi một khác nhau?

    Gọi số tự nhiên cần tìm có dạng \overline{abcde}.

    Khi đó: acó 5 cách chọn, bcó 4 cách chọn, ccó 3 cách chọn, dcó 2 cách chọn, ecó 1 cách chọn.

    Nên có tất cả5.4.3.2.1 =
120số.

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n < 200 và n là số chẵn?

    Trường hợp 1: n gồm một chữ số.

    Vì n < 200 và n là số chẵn nên có 2 số thỏa mãn là 4; 8

    Trường hợp 2: n gồm hai chữ số.

    Gọi n có dạng \overline{ab} thỏa mãn n < 200 và để n là số chẵn ta có

    b có 2 lựa chọn là {4; 8}

    a có 5 lựa chọn.

    2.5 = 10

    Trường hợp 3: n gồm ba chữ số. Vì n < 200 nên gọi n có dạng \overline{1bc}  và để n là số chẵn ta có

    c có 2 lựa chọn là {4; 8}

    b có 5 lựa chọn. Có 2.5 = 10

    Vậy có 10 + 10 + 2 = 22 số n thỏa mãn yêu cầu bài toán.

  • Câu 12: Vận dụng

    Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 13: Thông hiểu

    Tính số các số tự nhiên được tạo thành

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên gồm ba chữ số được lập từ B sao cho chữ số đằng sau luôn lớn hơn chữ số đẳng trước nó?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a \leq b \leq c)

    TH1: a < b < cC_{7}^{3} = 35 số thỏa mãn.

    TH2: a = b < cC_{7}^{2} = 21 số thỏa mãn.

    TH3: a < b = cC_{7}^{2} = 21 số thỏa mãn.

    TH4: a = b = cC_{7}^{1} = 7 số thỏa mãn.

    Vậy số các số được tạo thành là: 35 +
2.21 + 7 = 84 số.

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Trong khai triển nhị thức Newton của (1 + 3x)^{4}, số hạng thứ hai theo số mũ tăng dần của biến x là:

    Ta có:

    (1 + 3x)^{4} = C_{4}^{0} + C_{4}^{1}.3x
+ C_{4}^{2}.9x^{2} + ...

    C_{4}^{1}.3x = 12x

  • Câu 15: Vận dụng

    Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 16: Nhận biết

    Có tất cả bao nhiêu cách sắp xếp

    Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách?

    Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!.

  • Câu 17: Nhận biết

    Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.

    Số cách lấy ra 1 cây bút là màu xanh có 4 cách.

    Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.

    Vậy có 7 cách lấy 1 cây bút từ hộp bút.

  • Câu 18: Nhận biết

    Chọn đáp án đúng

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).

  • Câu 19: Nhận biết

    Xác định hệ số theo yêu cầu

    Tìm hệ số của x^{2}y^{2} trong khai triển nhị thức Newton của (x + 2y)^{4}?

    Số hạng tổng quát là: C_{n}^{k}a^{k}b^{n
- k} = C_{4}^{k}.x^{k}.(2y)^{2 - k} = C_{4}^{k}.2^{k}.x^{k}.y^{2 -
k}

    Hệ số của x^{2}y^{2} tìm được khi k = 2

    Vậy hệ số của x^{2}y^{2} trong khai triển là C_{4}^{2}.2^{2} =
12.

  • Câu 20: Nhận biết

    Tính số cách thực hiện công việc

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a.b (cách).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo