Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính khoảng cách từ điểm M đến hai tiêu điểm

    Cho Elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{12} =
1 và một điểm M nằm trên (E). Giải sử điểm M có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).

    Giả sử phương trình (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\
(a > b > 0) Ta có : \left\{
\begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c^{2} = a^{2} - b^{2} = 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 2 \\
\end{matrix} ight.

    Gọi F_{1},F_{2} lần lượt là hai tiêu điểm của Elip (E),M\left( 1;y_{M} ight) \in (E), ta có :

    \left\{ \begin{matrix}
MF_{1} = a + \frac{c}{a}x_{M} = 4 + \frac{1}{2}.1 = 4,5 \\
MF_{2} = a - \frac{c}{a}x_{M} = 4 - \frac{1}{2}.1 = 3,5 \\
\end{matrix} ight..

  • Câu 2: Vận dụng

    Khẳng định nào dưới đây là đúng?

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (với a > b > 0). Biết F_{1},F_{2} là hai tiêu điểm. Cho điểm M di động trên (E). Chọn khẳng định đúng?

    Ta có:

    MF_{1} = a + \frac{cx}{a};\ MF_{2} = a -
\frac{cx}{a} \Rightarrow MF_{1}.MF_{2} = a^{2} -
\frac{c^{2}x^{2}}{a^{2}}.

    \begin{matrix}
M(x;y) \in (E) \Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1
\\
\Rightarrow y^{2} = b^{2}\left( 1 - \frac{x^{2}}{a^{2}} ight)
\Rightarrow OM^{2} = x^{2} + y^{2} = x^{2} + b^{2}\left( 1 -
\frac{x^{2}}{a^{2}} ight) = x^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}
\\
\end{matrix} \begin{matrix}
MF_{1}.MF_{2} + OM^{2} = a^{2} - \frac{c^{2}x^{2}}{a^{2}} + x^{2} +
b^{2} - \frac{b^{2}x^{2}}{a^{2}} = a^{2} + b^{2} + x^{2} - \left(
\frac{c^{2}x^{2}}{a^{2}} + \frac{b^{2}x^{2}}{a^{2}} ight) \\
= a^{2} + b^{2} + x^{2} - \frac{\left( b^{2} + c^{2}
ight)x^{2}}{a^{2}} \\
\end{matrix}

    a^{2} = b^{2} + c^{2} nên MF_{1}.MF_{2} + OM^{2} = a^{2} + b^{2} +
x^{2} - \frac{\left( b^{2} + c^{2} ight)x^{2}}{a^{2}} = a^{2} + b^{2}
+ x^{2} - \frac{a^{2}x^{2}}{a^{2}} = a^{2} + b^{2}.

  • Câu 3: Thông hiểu

    Viết phương trình tổng quát

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 , với a, b > 0. Khi đó khẳng định nào sau đây sai?

     Đáp án sai là đáp án chứa độ dài trục lớn là 2b

  • Câu 5: Thông hiểu

    Xác định phương trình chính tắc của elip

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 6: Thông hiểu

    Tìm m thỏa mãn đề bài

    Tìm giá trị của tham số m sao cho đường thẳng (\Delta):(m - 1)y + mx - 2 =
0 là tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 6x + 5 = 0.

    Đường tròn (C) có tâm I(3; 0) và bán kính R = 2

    Để (\Delta) là tiếp tuyến của đường tròn (C) thì ta phải có:

    d(I;\Delta) = \frac{|3m - 2|}{\sqrt{(m -
1)^{2} + m^{2}}} = 2

    \Leftrightarrow 4\left( 2m^{2} - 2m + 1
ight) = 9m^{2} - 12m + 4

    \Leftrightarrow m^{2} - 4m = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 4 \\
\end{matrix} ight.

  • Câu 7: Vận dụng

    Tìm đường thẳng không có điểm chung

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 8: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Phương trình tham số của đường thẳng đi qua hai điểm C(1; - 1),D(2;5) là:

    Gọi d là đường thẳng qua C và nhận \overrightarrow{u} = \overrightarrow{CD} =
(0;6) làm vectơ chỉ phương.

    Khi đó phương trình tham số của đường thẳng d là: \left\{ \begin{matrix}
x = 2 \\
y = - 1 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 9: Nhận biết

    Tìm điểm không thuộc đường thẳng

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 10: Nhận biết

    Độ dài trục lớn là

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 11: Thông hiểu

    Tìm tiêu cự của elip

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 12: Nhận biết

    Tìm vectơ chỉ phương của đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 13: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 14: Nhận biết

    Chọn phương trình chính tắc của Parabol

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 15: Nhận biết

    Xét vị trí tương đối của hai đường thẳng

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 16: Vận dụng

    Tìm m để ba đường thẳng đồng quy

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 17: Nhận biết

    Viết phương trình tiếp tuyến

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 18: Thông hiểu

    Viết phương trình đường tròn qua ba điểm

    Phương tròn đường tròn đi qua ba điểm M( - 2;4),N(5;5),P(6; - 2) là:

    Gọi I(x;y) và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:

    IM = IN = IP \Leftrightarrow \left\{
\begin{matrix}
IM^{2} = IN^{2} \\
IM^{2} = IP^{2} \\
\end{matrix} ight. nên ta có hệ phương trình:

    \left\{ \begin{matrix}
(x + 2)^{2} + (y - 4)^{2} = (x - 5)^{2} + (y - 5)^{2} \\
(x + 2)^{2} + (y - 4)^{2} = (x - 6)^{2} + (y + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow I(2;1) \Rightarrow R =
5

    Vậy phương trình cầm tìm là: (x - 2)^{2}
+ (y - 1)^{2} = 25

    Hay x^{2} + y^{2} - 4x - 2y - 20 =
0

  • Câu 19: Nhận biết

    Tính góc giữa hai đường thẳng

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 20: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 21: Nhận biết

    Tìm vectơ pháp tuyến

    Đường thẳng d đi qua điểm M( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    Ta có:

    \left\{ \begin{matrix}M( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 22: Nhận biết

    Tính khoảng cách từ A đến đường thẳng d

    Trong mặt phẳng Oxy cho điểm A(4; - 5) và đường thẳng (d):3.x - 4y + 8 = 0. Tính khoảng cách từ điểm A đến đường thẳng (d).

    Khoảng cách từ điểm A đến đường thẳng (d) là:

    d\left( A;(d) ight) = \frac{\left| 3.4
- 4.( - 5) + 8 ight|}{\sqrt{3^{2} + 4^{2}}} = 8

    Vậy khoảng cách cần tìm bằng 8.

  • Câu 23: Thông hiểu

    Tìm m để ba đường thẳng đồng quy

    Cho ba đường thẳng \left( d_{1} ight):3x + 2y - 5 = 0, \left( d_{2} ight): - 2x + 3y - 1 =
0\left( d_{3} ight):(m - 1)x
+ (2m - 3)y - 2 = 0 với m là tham số. Xác định giá trị của tham số m để ba đường thẳng \left( d_{1}
ight);\left( d_{2} ight);\left( d_{3} ight) đồng quy?

    Gọi A = d_{1} \cap d_{2}. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
3x + 2y - 5 = 0 \\
- 2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Rightarrow A(1;1)

    Để ba đường thẳng đồng quy thì A \in
\left( d_{3} ight) hay

    (m - 1).1 + (2m - 3).1 - 2 =
0

    \Leftrightarrow m = 2

    Vậy m = 2 thì ba đường thẳng đã cho đồng quy.

  • Câu 24: Thông hiểu

    Xác định phương trình tổng quát của đường thẳng

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

  • Câu 25: Thông hiểu

    Tìm phương trình chính tắc của elip

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 26: Nhận biết

    Tìm hệ số góc k của đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 27: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 28: Thông hiểu

    Tính giá trị a + a'

    Trong mặt phẳng Oxy có đường thẳng \Delta đi qua điểm A(1;1) và tạo với đường thẳng d:2x + 3y + 1 = 0 một góc bằng 45^{0}. Biết rằng \Delta có dạng ax - 5y + 4 = 0a'x + y - 6 = 0. Tính tổng hai giá trị aa'?

    Gọi \overrightarrow{n} = (a;b) là vectơ pháp tuyến của đường thẳng \Delta.

    Phương trình tổng quát của đường thẳng \Delta là: ax
+ by - a - b = 0

    Ta có:

    \cos(d;\Delta) = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow cos45^{0} = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow \frac{\sqrt{2}}{2} =
\frac{|2a + 3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow
\sqrt{2}.\sqrt{13}.\sqrt{a^{2} + b^{2}} = 2|2a + 3b|

    \Leftrightarrow 10a^{2} - 48ab - 10b^{2}
= 0

    \Leftrightarrow \left\lbrack\begin{matrix}a = 5b \\a = - \dfrac{1}{5}b \\\end{matrix} ight.

    Vậy ta có phương trình của \Delta là: x
- 5y + 4 = 05x + y - 6 =
0

    Vậy a = 1;a' = 5 \Rightarrow a +
a' = 1 + 5 = 6

  • Câu 29: Nhận biết

    Tìm phương trình chính tắc của elip

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 30: Vận dụng

    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 31: Nhận biết

    Xét vị trí tương đối

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 32: Vận dụng

    Tìm phương trình đường tròn

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 33: Vận dụng

    Tìm phương trình đường thẳng

    Cho ba đường thẳng d_{1}:3x–2y + 5 = 0, d_{2}:2x + 4y–7 = 0, d_{3}:3x + 4y–1 = 0. Phương trình đường thẳng d đi qua giao điểm của d_{1}d_{2}, và song song với d_{3} là:

    \left\{ \begin{matrix}d_{1}:3x-2y + 5 = 0 \\d_{2}:2x + 4y-7 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{3}{8} \\y = \dfrac{31}{16} \\\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A\left( -
\frac{3}{8};\frac{31}{16} ight).

    Ta có:

    \left\{ \begin{matrix}A \in d \\d||d_{3}:3x + 4y–1 = 0 \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}A \in d \\d:3x + 4y + c = 0\ \ \left( ceq - 1 ight) \\\end{matrix} ight.

    ightarrow - \frac{9}{8} + \frac{31}{4}
+ c = 0 \Leftrightarrow c = - \frac{53}{8}.

    Vậy d:3x + 4y–\frac{53}{8} = 0
\Leftrightarrow d_{3}:24x + 32y - 53 = 0.

  • Câu 34: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 35: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 36: Thông hiểu

    Đường chuẩn của parabol

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 37: Nhận biết

    Chọn đáp án đúng

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 38: Nhận biết

    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 39: Thông hiểu

    Viết phương trình tiếp tuyến của đường tròn

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 2x + 4y + 4 = 0. Viết phương trình tiếp tuyến của đường tròn (C) biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0?

    Đường tròn (C) có tâm I(1; - 2);R =
1

    \Delta vuông góc với đường thẳng x + 2y + 5 = 0 nên phương trình \Delta có dạng 2x - y + m = 0

    \Delta là tiếp tuyến của (C) nên ta có:

    d(I;\Delta) = R \Leftrightarrow \frac{|2
+ 2 + m|}{\sqrt{1^{2} + 2^{2}}} = 1

    \Leftrightarrow |4 + m| = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = \sqrt{5} - 4 \\
m = - \sqrt{5} - 4 \\
\end{matrix} ight.

    Với m = \sqrt{5} - 4 thì phương trình \Delta2x - y + \sqrt{5} - 4 = 0

    Với m = - \sqrt{5} - 4 thì phương trình \Delta2x - y - \sqrt{5} - 4 = 0

  • Câu 40: Nhận biết

    Tìm tâm và bán kính

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo