Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 10 Chương 4 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Vndoc mời các bạn cùng tham gia Trắc nghiệm Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác nhằm ôn luyện kiến thức bài học thông qua các mẫu bài tập Toán 10 sách Cánh diều khác nhau đồng thời đánh giá năng lực bản thân.

Vndoc mời bạn tham khảo Trắc nghiệm Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác được trình bày dưới dạng bài tập trực tuyến nhằm giúp học sinh lớp 10 củng cố và rèn luyện kỹ năng tính toán, khả năng tư duy với các dạng bài tập Toán 10 sách Cánh diều mới nhất. Tham gia làm bài test để làm quen với các dạng toán Chương 4 Hệ thức lượng trong tam giác, ngoài ra tại chuyên mục Lý thuyết Toán 10 CD có đầy đủ các bài tập bám sát chương trình học SGK Cánh diều lớp 10.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

    Hướng dẫn:

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 2: Thông hiểu
    Tính độ dài cạnh BC.

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

    Hướng dẫn:

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 3: Vận dụng
    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh

    AB = 9 và \widehat{ACB}=60°. Tính độ dài cạnh cạnh BC.

    Hướng dẫn:

     Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra AC=6.

    Áp dụng định lí côsin:

    A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 60^\circ

    \Leftrightarrow 9^2 = 6^2 + C{B^2} - 2.6 .CB.\frac1{2}

    \Leftrightarrow C{B^2} -  6 CB -45 = 0 \Rightarrow BC = 3 + 3\sqrt 6.

  • Câu 4: Nhận biết
    Tính độ dài BC

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

    Hướng dẫn:

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 5: Nhận biết
    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

    Hướng dẫn:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 6: Thông hiểu
    Tính độ dài AC

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

    Hướng dẫn:

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 7: Nhận biết
    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

    Hướng dẫn:

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 8: Nhận biết
    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

    Hướng dẫn:

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 9: Nhận biết
    Tính giá trị cotang của góc

    Giá trị cot\frac{\pi }{6} là:

    Hướng dẫn:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 10: Nhận biết
    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

    Hướng dẫn:

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Cánh diều

Xem thêm