Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm phương trình đường tròn

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

  • Câu 2: Nhận biết

    Xác định phương trình Elip

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 3: Thông hiểu

    Viết phương trình tổng quát

    Phương trình tổng quát của đường thẳng d đi qua O và song song với đường thẳng \Delta:6x - 4x + 1 = 0 là:

    \left\{ \begin{matrix}
O(0;0) \in d \\
d||\Delta:6x - 4x + 1 = 0 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
O(0;0) \in d \\
d:6x - 4x + c = 0\ \ \left( c\boxed{=}1 ight) \\
\end{matrix} ight.\ \overset{ightarrow}{}6.0 - 4.0 + c = 0
\Leftrightarrow c = 0. Vậy d:6x -
4y = 0 \Leftrightarrow d:3x - 2y = 0.

  • Câu 4: Nhận biết

    Tìm điều kiện chính xác

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 5: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight. trùng nhau?

    \begin{matrix}
\left\{ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\  ightarrow A(m;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = \left( 2;m^{2} + 1 ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{2} = (m;1) \\
\end{matrix} ight.\  \\
\\
\end{matrix} .

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{m}{2} = \frac{1}{m^{2} + 1} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 1 + m(1 - m) \\
(m - 1)\left( m^{2} + m + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

  • Câu 6: Nhận biết

    Tìm điểm thuộc đường thẳng

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 7: Nhận biết

    Tìm vectơ chỉ phương

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 8: Thông hiểu

    Tìm phương trình không thỏa mãn

    Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?

    Xét đáp án x^{2} + y^{2} - x + y + 4 = 0
ightarrow a = \frac{1}{2},\ b = - \frac{1}{2},\ c = 4

    ightarrow a^{2} + b^{2} - c < 0
ightarrowChọn đáp án này.

    Các đáp án còn lại các hệ số a,\ \ b,\ \
c thỏa mãn a^{2} + b^{2} - c >
0.

  • Câu 9: Nhận biết

    Chọn kết luận đúng

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (\Delta):ax + by + c = 0;\left( a^{2} + b^{2} >
0 ight) và tọa độ một điểm A\left( x_{0};y_{0} ight). Ta kí hiệu khoảng cách từ điểm A đến đường thẳng (\Delta)d(A;\Delta). Kết luận nào sau đây đúng?

    Khoảng cách từ điểm A đến đường thẳng (\Delta) được tính bởi công thức:

    d(A;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

    Vậy kết luận đúng là: “d(A;\Delta) =
\frac{\left| ax_{0} + by_{0} + c ight|}{\sqrt{a^{2} +
b^{2}}}”.

  • Câu 10: Thông hiểu

    Tìm phương trình tổng quát của AB

    Trong mặt phẳng Oxy cho điểm M(1;2). Gọi A,B là hình chiếu của M lên Ox,Oy. Phương trình tổng quát của đường thẳng AB là:

    Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra A(1;0),B(0;2)

    Khi đó phương trình đường thẳng AB là: \frac{x}{1} + \frac{y}{2} = 1 \Leftrightarrow 2x +
y - 2 = 0.

    Vậy phương trình tổng quát của AB là: 2x + y - 2 = 0.

  • Câu 11: Vận dụng

    Xác định phương trình đường thẳng BC

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 12: Nhận biết

    Tìm tâm và bán kính đường tròn

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 13: Vận dụng

    Tìm m thỏa mãn điều kiện

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 14: Vận dụng

    Tính giá trị biểu thức Q

    Cho hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C). Biết tâm I(a;b) của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0. Tính giá trị biểu thức Q = a + 2b?

    Tâm I của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0 nên ta có: a - 4b = 0\ \ \ (*)

    Hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.

    Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)

    Đường trung trực AB đi qua điểm M(0; 3) và nhận \overrightarrow{AB} = ( - 8; - 8) là vecto pháp tuyến có phương trình x + y - 3 =
0

    Vì trung trực AB cũng đi qua tâm I nên ta có: a + b - 3 = 0\ \ \ (**)

    Từ (*) và (**) suy ra a = \frac{12}{5};b
= \frac{3}{5}

    \Rightarrow Q = a + 2b =
\frac{18}{5}

  • Câu 15: Thông hiểu

    Đường chuẩn của parabol

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 16: Nhận biết

    Tìm khẳng định đúng

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 17: Thông hiểu

    Viết phương trình tiếp tuyến của đường thẳng

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 18: Vận dụng

    Tìm tọa độ điểm M thỏa mãn

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Hãy tìm tọa độ điểm M trên (H) thỏa mãn M thuộc nhánh phải và MF_{1} nhỏ nhất (ngắn nhất).

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \sqrt{5} \\
\end{matrix} ight.\ .

    Gọi M\left( x_{0};y_{0} ight) \in
(H).

    Ta có: \frac{x^{2}}{4} - y^{2} = 1
\Leftrightarrow x^{2} = 4\left( y^{2} + 1 ight). M thuộc nhánh phải của (H) nên x_{0}
\geq 2.

    MF_{1} = 2 + \frac{2}{\sqrt{5}}x_{0} \geq
2 + \frac{4}{\sqrt{5}}. MF_{1} nhỏ nhất bằng \frac{4}{\sqrt{5}} khi M \equiv A(2;0).

  • Câu 19: Thông hiểu

    Tính độ dài tiêu cự của elip

    Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F_1, F_2 là các tiêu điểm của elip. Khi đó độ dài F_1F_2 bằng:

    Ta có độ dài trục lớn bằng 4 m. 

    => 2a = 4 => a = 2.

    Lại có độ dài trục nhỏ bằng 2m. 

    => 2b = 2=> b = 1

    Ta có c = \sqrt {{a^2} - {b^2}}  = \sqrt 3

    => {F_1}{F_2} = 2c = 2\sqrt 3

  • Câu 20: Thông hiểu

    Ghi đáp án vào ô trống

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo