Tìm tọa độ tâm và bán kính
Tọa độ tâm
và bán kính
của đường tròn
là:
Đề kiểm tra 15 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tìm tọa độ tâm và bán kính
Tọa độ tâm
và bán kính
của đường tròn
là:
Xét vị trí tương đối của hai đường thẳng
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Tính khoảng cách từ điểm đến đường thẳng
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Xác định phương trình đường tròn
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Tìm vectơ chỉ phương
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Xác định khẳng định đúng
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Viết phương trình tổng quát
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và vuông góc với đường thẳng ![]()
Độ dài trục lớn là
Elip
có độ dài trục lớn bằng:
Ta có: .
Viết phương trình đường tròn
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Tính giá trị biểu thức P
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Tính độ dài đường kính
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Tìm m để ba đường thẳng cùng đi qua một điểm
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Viết phương trình parabol (P)
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Tìm điều kiện chính xác
Cho hai đường thẳng
và
có phương trình lần lượt là
và
. Xét hệ
. Khi đó hai đường cắt nhau khi và chỉ khi:
Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.
Tìm tiêu cự trục lớn
Cho hình elip có phương trình
. Hình elip có tiêu cự trục lớn bằng:
Ta có:
Độ dài trục lớn là:
Có bao nhiêu đường tròn thỏa mãn
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường tròn
có phương trình lần lượt là
và elip
có phương trình
. Có bao nhiêu đường tròn
có bán kính gấp đôi độ dài trục lớn của elip
và
tiếp xúc với hai đường tròn
,
?
Ta có có độ dài trục lớn là
.
Khi đó đường tròn có bán kính là
. Gọi
là tâm của đường tròn
.
Xét có
vuông tại
.
Ta có ,
. Khi đó điểm
thỏa mãn:
.
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán là
hoặc
.
Tìm phương trình chính tắc của hypebol
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Tìm phương trình tham số
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Xét vị trí tương đối
Xét vị trí tương đối giữa hai đường thẳng
và
.
Ta có: nên hai đường thẳng trùng nhau.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: