Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi học kì 2 Toán lớp 10 Cánh Diều - Đề 1

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Cùng nhau ôn tập, thử sức với Đề kiểm tra HK2 Toán lớp 10 - Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Tính xác suất để tích hai số là số chẵn

    Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?

    Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.

    Ta có: n(\Omega) = C_{15}^{2} =
105

    Gọi A là biến cố “Tích hai số được chọn là một số chẵn”

    TH1: 1 số lẻ và 1 số chẵn ta có: 7.8 cách chọn

    TH2: 2 số chẵn ta có: C_{7}^{2} cách chọn

    \Rightarrow n(A) = 7.8 + C_{7}^{2} =
77

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{77}{105} = \frac{11}{15}

  • Câu 2: Thông hiểu

    Tính số trung bình của mẫu số liệu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 3: Nhận biết

    Tìm khoảng biến thiên

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 4: Thông hiểu

    Tìm phương trình đường tròn (C)

    Xác định phương trình đường tròn (C) tâm I( -
2;1). Biết (C) cắt đường thẳng \Delta:x - 2y + 3 = 0 tại hai điểm AB sao cho AB = 2.

    Gọi h là khoảng cách từ điểm I đến đường thẳng \Delta:x - 2y + 3 = 0. Ta có:

    h = d(I;\Delta) = \frac{| - 2 - 2 +
3|}{\sqrt{1^{2} + ( - 2)^{2}}} = \frac{1}{\sqrt{5}}

    Gọi R là bán kính đường tròn, từ giả thiết suy ra:

    R = \sqrt{h^{2} + \frac{AB^{2}}{4}} =
\sqrt{\frac{1}{5} + \frac{2^{2}}{4}} = \sqrt{\frac{6}{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 2)^{2} + (y - 1)^{2} =
\frac{6}{5}.

  • Câu 5: Vận dụng

    Tính các tứ phân vị của mẫu số liệu

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 6: Nhận biết

    Xác định tiêu điểm

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 7: Nhận biết

    Tìm mốt của mẫu số liệu

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 8: Nhận biết

    Tìm phương trình đường tròn

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 9: Nhận biết

    Tìm số hạng thỏa mãn

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 10: Thông hiểu

    Chọn kết luận đúng

    Giải phương trình C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} = 78. Kết luận nào sau đây đúng?

    Điều kiện: n \geq 2,n\mathbb{\in
N}

    Ta có:

    C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} =
78

    \Leftrightarrow \frac{n!}{2!(n - 2)!} +
2.\frac{n!}{1!(n - 1)!} + \frac{n!}{0!(n - 0)!} = 78

    \Leftrightarrow \frac{n(n - 1)(n -
2)!}{2!(n - 2)!} + 2.\frac{n(n - 1)!}{1!(n - 1)!} + \frac{n!}{n!} =
78

    \Leftrightarrow \frac{n(n - 1)}{1} + 2n
+ 1 = 78

    \Leftrightarrow n^{2} - n + 4n + 2 =
156

    \Leftrightarrow n^{2} + 3n - 154 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 11(TM) \\
n = - 14(L) \\
\end{matrix} ight.

    Vậy kết luận đúng là: n là số nguyên tố.

  • Câu 11: Nhận biết

    Chọn khẳng định đúng

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 12: Nhận biết

    Chọn đáp án đúng

    Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?

     Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có A_{34}^3 cách.

  • Câu 13: Vận dụng

    Xác suất để tổng số chia hết cho 3

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 14: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 15: Thông hiểu

    Tìm phương trình chính tắc của elip

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 16: Thông hiểu

    Tính độ lớn góc

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 17: Thông hiểu

    Chỉ ra giá trị bất thường

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 18: Nhận biết

    Chọn đáp án chính xác

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 19: Nhận biết

    Xác định phương trình đường thẳng

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 20: Thông hiểu

    Chọn đáp án chính xác

    Viết phương trình tham số của đường thẳng \Delta đi qua điểm B(5;4) và vuông góc với đường thẳng d:x - 2y + 5 = 0?

    d\bot\Delta nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của \Delta

    \overrightarrow{u_{d}} =
\overrightarrow{n_{\Delta}} = (2;1)

    Đường thẳng \Delta có vectơ pháp tuyến là: \overrightarrow{n} =
(2;1) và đi qua điểm B(5;4) là:

    2(x - 5) + 1(y - 4) = 0

    \Leftrightarrow 2x + y - 14 =
0.

  • Câu 21: Thông hiểu

    Tính số tam giác được tạo thành

    Cho tam giác ABC. Trên mỗi cạnh AB; BC, AC lấy 9 điểm phân biệt là không có điểm nào trùng với 3 đỉnh A, B, C. Hỏi từ 30 điểm đã cho (tính cả A; B; C) có thể lập được bao nhiêu tam giác?

    Để tạo ra một tam giác ta lấy 3 điểm không thẳng hàng

    Ta xét cách lấy ba điểm thẳng hàng thì có 3 trường hợp là: 3 điểm thuộc đoạn AB, 3 điểm thuộc đoạn AC, điểm thuộc đoạn BC. Trên mỗi đoạn thẳng có 11 điểm nên số cách lấy 3 điểm trên mỗi đoạn là: C_{11}^{3}

    Số cách lấy 3 điểm bất kì trong 30 điểm là: C_{30}^{3}

    Vậy số tam giác được tạo ra từ 30 điểm đã cho là: C_{30}^{3} - 3.C_{11}^{3} = 3565 tam giác.

  • Câu 22: Nhận biết

    Xác định số cách chọn học sinh

    Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?

    Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.

  • Câu 23: Thông hiểu

    Xác định độ lệch chuẩn

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 24: Thông hiểu

    Tính xác suất của biến cố

    Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:

    C = \begin{Bmatrix}
(2;6),(3;5),(3;6),(4;4),(4;5) \\
(4;6),(5;3),(5;4),(5;5),(5;6) \\
(6;2),(6;3),(6;4),(6;5),(6;6) \\
\end{Bmatrix}

    \Rightarrow n(C) = 15

    Vậy xác suất của biến cố C là: P(C) =
\frac{n(C)}{n(\Omega)} = \frac{15}{36} = \frac{5}{12}.

  • Câu 25: Thông hiểu

    Tìm điểm Q để MNPQ là hình bình hành

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm M( - 3;1),N(1;4),P(5;3). Xác định tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành?

    Gọi tọa độ điểm Q(x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MQ} = (x + 3;y - 1) \\
\overrightarrow{NP} = (4; - 1) \\
\end{matrix} ight.

    Vì MNPQ là hình bình hành nên

    \overrightarrow{MQ} =
\overrightarrow{NP} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 4 \\
y - 1 = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 0 \\
\end{matrix} ight.

    Vậy tọa độ điểm Q cần tìm là Q(1;0).

  • Câu 26: Thông hiểu

    Tính giá trị của n

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 27: Vận dụng cao

    Tính xác suất để các điểm tạo thành tam giác vuông cân

    Cho một đa giác đều (H) có 20 đỉnh. Chọn ngẫu nhiên ba đỉnh của (H). Tính xác suất để ba đỉnh được chọn tạo thành một tam giác vuông cân?

    Số phần tử của không gian mẫu C_{20}^{3}
= 1140

    Gọi A là biến cố: “Chọn được ba đỉnh tạo thành một tam giác vuông cân”.

    Ba đỉnh được chọn tạo thành một tam giác vuông cân khi và chỉ khi trong ba đỉnh được chọn có hai đỉnh là đầu mút của một đường kính của đường tròn ngoại tiếp (H) và đỉnh còn lại là giao điểm (hai giao điểm) giữa đường thẳng qua tâm vuông góc với đường kính đã chọn và đường tròn ngoại tiếp (H).

    Đa giác đều có 20 đỉnh nên có: 20:2 =
10 đường kính.

    Số cách chọn 1 đường kính là 10

    Số cách chọn 1 đỉnh còn lại là 2

    Suy ra số tam giác vuông cân có thể tạo thành là 10.2 = 20 tam giác

    Suy ra xác suất của biến cố: “ba đỉnh được chọn tạo thành một tam giác vuông cân” là: \frac{20}{1140} =
\frac{1}{57}

  • Câu 28: Thông hiểu

    Tính số trung bình của mẫu số liệu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 29: Nhận biết

    Chọn đáp án đúng

    Cho số đúng \overline{a} = 40 \pm 0,5. Giá trị của \overline{a} thuộc đoạn nào sau đây?

    Ta có:

    \overline{a} = 40 \pm 0,5 \Rightarrow
\overline{a} \in \lbrack 39,5;40,5brack

  • Câu 30: Nhận biết

    Tìm biến cố đối của A

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 31: Nhận biết

    Định tọa độ trọng tâm tam giác

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 32: Thông hiểu

    Tính sai số tuyệt đối

    Quy tròn số 2,473 đến hàng phần chục được số 2,5. Sai số tuyệt đối là:

    Sai số tuyệt đối là: |2,5 - 2,473| =
0,027.

  • Câu 33: Vận dụng

    Tìm số tập con khác rỗng thỏa mãn điều kiện

    Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?

    Tổng số các tập con của tập M là: 2^{20}

    Trong đó số tập con khác rỗng và có số phần tử chẵn là:

    C_{20}^{2} + C_{20}^{4} + ... +
C_{20}^{20}

    Lại có: C_{20}^{0} + C_{20}^{1} +
C_{20}^{2} + ... + C_{20}^{19} + C_{20}^{20} = (1 + 1)^{20} =
2^{20}

    C_{20}^{0} - C_{20}^{1} + C_{20}^{2} +
... - C_{20}^{19} + C_{20}^{20} = (1 - 1)^{20} = 0

    Do đó:

    C_{20}^{0} + C_{20}^{2} + C_{20}^{4} +
... + C_{20}^{20} = C_{20}^{1} + C_{20}^{3} + C_{20}^{5} + ... +
C_{20}^{17} + C_{20}^{19} = 2^{19}

    \Rightarrow C_{20}^{2} + C_{20}^{4} +
... + C_{20}^{20} = 2^{19} - C_{20}^{0} = 2^{19} - 1

  • Câu 34: Vận dụng cao

    Tìm tọa độ điểm A

    Cho tam giác ABC;\left( \widehat{A} = 90^{0} ight) nội tiếp đường tròn (C):x^{2} + y^{2} - 6x -
2y + 5 = 0. Gọi H là hình chiếu vuông góc của A trên cạnh BC. Đường tròn đường kính AH cắt AB;AC lần lượt tại M;N. Biết đường thẳng chứa M;N có phương trình 20x - 10y - 9 = 0. Tìm tọa độ điểm A?

    Hình vẽ minh họa

    Do tam giác ABC vuông tại A và nội tiếp đường tròn (C) nên (C) là đường tròn đường kính BC (tâm I(3; 1) là trung điểm của BC.

    Đường tròn đường kính AH cắt AB và AC lần lượt tại M và N nên HM\bot AB;HM\bot AC

    Ta có:

    2\overrightarrow{AI}.\overrightarrow{MN}
= \left( \overrightarrow{AB} + \overrightarrow{AC} ight).\left(
\overrightarrow{MA} + \overrightarrow{AN} ight)

    =
\overrightarrow{AB}.\overrightarrow{MA} +
\overrightarrow{AC}.\overrightarrow{AN}

    = \overrightarrow{AB}.\left(
\overrightarrow{MH} + \overrightarrow{HA} ight) +
\overrightarrow{AC}.\left( \overrightarrow{AH} + \overrightarrow{HN}
ight)

    =
\overrightarrow{AB}.\overrightarrow{HA} +
\overrightarrow{AC}.\overrightarrow{AH}

    = \left( \overrightarrow{AB} -
\overrightarrow{AC} ight).\overrightarrow{AH}

    =
\overrightarrow{BC}.\overrightarrow{AH} = 0

    \Rightarrow AI\bot MN\ \
(*)

    Do đó AI có phương trình 10x + 20y + c =
0

    Ta có: I \in AI \Rightarrow c = -
50

    Suy ra phương trình AI là 10x + 20y - 50
= 0 \Rightarrow x + 2y - 5 = 0

    A = AI \cap (C) nên ta có tọa độ điểm A thỏa mãn hệ phương trình:

    \left\{ \begin{matrix}
x + 2y - 5 = 0 \\
x^{2} + y^{2} - 6x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x = 5 \\
y = 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 1 \\
y = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow \Leftrightarrow \left\lbrack
\begin{matrix}
A(5;0) \\
A(1;2) \\
\end{matrix} ight.

    Nếu A(5;0) khi đó \left( 20x_{A} - 10y_{A} - 9 ight).\left(
20x_{I} - 10y_{I} - 9 ight) > 0 khi đó A và I nằm cùng phía đối với đường thẳng MN nên không thỏa mãn yêu cầu đề bài.

    Vậy tọa độ điểm A là A(1;2)

  • Câu 35: Nhận biết

    Tính d(M, ∆)

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 36: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 37: Thông hiểu

    Tính xác suất để chọn được 3 bạn nam

    Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?

    Số cách chọn 3 học sinh từ 15 học sinh là: C_{15}^{3}

    Số cách chọn 3 học sinh nam từ 9 học sinh nam là: C_{9}^{3}

    Vậy xác suất để chọn được 3 học sinh nam là: \frac{C_{9}^{3}}{C_{15}^{3}} =
\frac{12}{65}

  • Câu 38: Vận dụng

    Tính diện tích nhỏ nhất của tam giác

    Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) tiếp xúc với đường tròn (O;1), cắt các trục Ox,Oy lần lượt tại các điểm A;B. Tam giác OAB có diện tích nhỏ nhất là:

    Hình vẽ minh họa

    Gọi A(a;0);(a eq 0) là giao điểm của đường thẳng (d)Ox

    B(0;b);(b eq 0) là giao điểm của đường thẳng (d)Oy

    Khi đó:

    OA = |a|;OB = |b|

    \Rightarrow S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}|ab|\ \ (*)

    Xét tam giác OAB vuông tại O ta có:

    \frac{1}{OA^{2}} + \frac{1}{OB^{2}} =
\frac{1}{OH^{2}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} = 1 \Leftrightarrow a^{2} + b^{2} =
a^{2}b^{2}

    \Rightarrow a^{2}b^{2} = a^{2} + b^{2}
\geq 2|a|.|b|

    \Leftrightarrow |ab| \geq 2

    Từ (*) \Rightarrow S_{OAB} \geq
1

    Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.

  • Câu 39: Nhận biết

    Tìm vectơ pháp tuyến

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 40: Nhận biết

    Tìm biến cố chắc chắn

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 2 Toán lớp 10 Cánh Diều - Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo