Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác. Vectơ sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tính khoảng cách giữa hai điểm A và B

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 2: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 3: Thông hiểu

    Chọn phát biểu đúng

    Cho tam giác đều ABC cạnh a, trọng tâm là G. Phát biểu nào là đúng?

    Hình vẽ minh họa:

    \left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = \left| 2\overrightarrow{AH} \right| =
2\frac{a\sqrt{3}}{2} = a\sqrt{3}.

    \sqrt{3}\left| \overrightarrow{AB} -
\overrightarrow{AC} \right| = \sqrt{3}\left| \overrightarrow{CB} \right|
= a\sqrt{3}.

    Vậy:\left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = \sqrt{3}\left| \overrightarrow{AB} -
\overrightarrow{AC} \right|

  • Câu 4: Thông hiểu

    Chọn câu đúng

    Chọn mệnh đề đúng?

    Ta có:

    \sin^{4}x - \cos^{4}x = \left( \sin^{2}x -\cos^{2}x \right)\left( \sin^{2}x + \cos^{2}x \right)

    = \left( 1 - \cos^{2}x \right) - \cos^{2}x= 1 - 2\cos^{2}x.

  • Câu 5: Thông hiểu

    Khẳng định nào sau đây sai?

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 6: Nhận biết

    Tính tổng các vectơ

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 7: Nhận biết

    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 8: Thông hiểu

    Chọn mệnh đề đúng.

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

  • Câu 9: Nhận biết

    Tìm vectơ

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Tìm khẳng định sai

    Cho tam giác ABC vuông cân tại A, AB =
1. Khẳng định nào sau đây sai.

    Hình vẽ minh họa:

    Gọi D là đỉnh thứ \overrightarrow{IB} = ( - 1;b + 2) của hình bình hành ABCD.

    Khi đó :

    \overrightarrow{AB}.\overrightarrow{BC} =\overrightarrow{AB}.\overrightarrow{AD} = AB.AD.\cos\widehat{BAD}

    =1.\sqrt{2}.\left( - \frac{\sqrt{2}}{2} \right) = - 1.

    Suy ra \overrightarrow{AB}.\overrightarrow{CB} =
1.

  • Câu 11: Nhận biết

    Chọn phương án thích hợp

    Cho đoạn thẳng AB và điểm I thỏa mãn \overrightarrow{IB} +3\overrightarrow{IA} =\overrightarrow{0}. Hình nào sau đây mô tả đúng giả thiết này?

    Ta có: \overrightarrow{IB} +
3\overrightarrow{IA} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{IB} = - 3\overrightarrow{IA}.

    Do đó IB = 3.IA;\overrightarrow{IA}\overrightarrow{IB} ngược hướng.

    Chọn Hình 4.

  • Câu 12: Thông hiểu

    Chọn khẳng định đúng

    Cộng các vectơ có cùng độ dài 5 và cùng giá. Khẳng định nào sau đây đúng?

    Cộng số chẵn các vectơ ngược hướng cùng độ dài ta được vectơ \overrightarrow{\mathbf{0}}.

  • Câu 13: Nhận biết

    Tính độ dài MN

    Nếu hai điểm M, N thỏa mãn \overrightarrow{MN}.\ \overrightarrow{NM} = -
4 thì độ dài đoạn thẳng MN bằng bao nhiêu?

    Ta có:

    \overrightarrow{MN}.\overrightarrow{NM} = \overrightarrow{MN}. (- \overrightarrow{MN})= -MN^{2} = - 4 \Rightarrow MN = 2

  • Câu 14: Thông hiểu

    Tìm biểu thức sai

    Cho 2 vectơ \overrightarrow{a} = \left(a_{1};a_{2} \right),\overrightarrow{b} = \left( b_{1};b_{2}\right), tìm biểu thức sai?

    Phương án \overrightarrow{a}.\overrightarrow{b} =
a_{1}.b_{1} + a_{2}.b_{2}:

    Biểu thức tọa độ tích vô hướng \overrightarrow{a}.\overrightarrow{b} =
a_{1}.b_{1} + a_{2}.b_{2} nên loại.

    Phương án \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|.cos\left(
\overrightarrow{a},\overrightarrow{b} \right):

    Công thức tích vô hướng của hai véc tơ \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|.cos\left(
\overrightarrow{a},\overrightarrow{b} \right) nên loại.

    Phương án \overrightarrow{a}.\overrightarrow{b} =
\frac{1}{2}\left\lbrack \overrightarrow{a^{2}} + \overrightarrow{b^{2}}
- \left( \overrightarrow{a} + \overrightarrow{b} \right)^{2}
\right\rbrack:

    \frac{1}{2}\left\lbrack
\overrightarrow{a^{2}} + \overrightarrow{b^{2}} - \left(
\overrightarrow{a} + \overrightarrow{b} \right)^{2} \right\rbrack =
\frac{1}{2}\left\lbrack \overrightarrow{a^{2}} + \overrightarrow{b^{2}}
- \left( \overrightarrow{a^{2}} + \overrightarrow{b^{2}} +
2\overrightarrow{a}\overrightarrow{b} \right) \right\rbrack = -
\overrightarrow{a}\overrightarrow{b} nên chọn.

  • Câu 15: Nhận biết

    Chọn mệnh đề đúng

    Cho ba điểm A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi 3 điểm A,\ \ B,\ \ C thẳng hàng và B nằm giữa A,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm.

  • Câu 16: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD}= \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} ight) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 17: Nhận biết

    Chọn đẳng thức đúng

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 18: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Trong mặt phẳng tọa độ Oxy cho\overrightarrow{a} = (2;1),\overrightarrow{\ b} =
(3;4),\ \overrightarrow{c} = (7;2). Cho biết \overrightarrow{c} = m.\overrightarrow{a} +
n.\overrightarrow{b}. Khi đó

    Ta có: \overrightarrow{c} =m.\overrightarrow{a} + n.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2m + 3n \\2 = m + 4n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{22}{5} \ = - \frac{3}{5} \\\end{matrix} ight..

  • Câu 19: Vận dụng

    Phân tích vectơ theo hai vectơ đã cho

    Cho tứ giác ABCD, trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Hình vẽ minh họa:

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}
\right)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} \right) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
\right).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =
\overrightarrow{AD} + 2\ \overrightarrow{BC} \Leftrightarrow \overrightarrow{MN} =
\frac{1}{3}\overrightarrow{AD} +
\frac{2}{3}\overrightarrow{BC}.

  • Câu 20: Nhận biết

    Tìm khẳng định sai

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo