Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác. Vectơ sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính giá trị biểu thức T

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 2: Vận dụng

    Chọn hệ thức đúng

    Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng:

    Ta có:

    2\overrightarrow{MA} +
\overrightarrow{MB} - 3\overrightarrow{MC}

    = 2\overrightarrow{MC} +
2\overrightarrow{CA} + \overrightarrow{MC} + \overrightarrow{CB} -
3\overrightarrow{MC} = 2\overrightarrow{CA} +
\overrightarrow{CB}.

  • Câu 3: Nhận biết

    Tính góc giữa hai vectơ

    Trong mặt phẳng toạ độ Oxy, cho \overrightarrow{OM} = ( - 2;\  -
1), \overrightarrow{ON} = (3;\  -
1). Tính góc \left(
\overrightarrow{OM},\ \overrightarrow{ON} \right).

    Ta có:

    \cos\left( \overrightarrow{OM},\
\overrightarrow{ON} \right) =
\frac{\overrightarrow{OM}.\overrightarrow{ON}}{OM.ON} = \frac{- 2.3 + (
- 1).( - 1)}{\sqrt{5}.\sqrt{10}} = - \frac{1}{\sqrt{2}}.

    Suy ra \left( \overrightarrow{OM},\
\overrightarrow{ON} \right) = 135^{0}.

  • Câu 4: Nhận biết

    Tìm điều kiện đúng

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 5: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCDcó tâmO. Khẳng định nào sau đây là sai:

    Hình vẽ minh họa:

    Ta có: \overrightarrow{AO} +
\overrightarrow{DC} = \overrightarrow{AO} + \overrightarrow{AB} \neq
\overrightarrow{OB}.

  • Câu 6: Vận dụng

    Tìm tọa độ điểm C

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 7: Nhận biết

    Tính số đo góc A

    Cho \Delta ABC\widehat{C} = 45^{0},\widehat{B} =
75^{0}. Số đo của góc A là:

    Ta có:

    \widehat{A} + \widehat{B} + \widehat{C}
= 180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
\widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} =
60^{0}.

  • Câu 8: Thông hiểu

    Hai vectơ nào sau đây cùng phương?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây cùng phương?

    Ta có \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b} = - \left( - \frac{1}{2}\overrightarrow{a} +
\overrightarrow{b} ight) nên chọn đáp án \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b}-
\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}.

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 10: Nhận biết

    Tìm đáp án sai

    Cho tứ giác ABCD. Nếu \overrightarrow{AB} = \overrightarrow{DC} thì ABCD là hình gì? Tìm đáp án sai.

    Nếu \overrightarrow{AB} =
\overrightarrow{DC} thì ABCD là hình thang.

  • Câu 11: Nhận biết

    Xác định hệ thức sai

    Hai góc nhọn \alpha\beta phụ nhau, hệ thức nào sau đây là sai?

    Ta có:

    \cos\alpha = \cos\left( 90^{0} - \beta
\right) = \sin\beta

    Vậy hệ thức sai là: \cos\alpha = -
\sin\beta.

  • Câu 12: Thông hiểu

    Xác định cặp vectơ thỏa mãn yêu cầu

    Cặp vectơ nào sau đây vuông góc?

    Phương án \overrightarrow{a} = (2; -
1)\overrightarrow{b} = ( -
3;4):

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 3) + ( - 1).4 = - 10 \neq 0 suy ra đáp án này sai.

    Phương án \overrightarrow{a} = (3; -
4)\overrightarrow{b} = ( -
3;4):

    \overrightarrow{a}.\overrightarrow{b} =
3.( - 3) + ( - 4).4 \neq 0 suy ra đáp án này sai.

    Phương án \overrightarrow{a} = ( - 2; -
3)\overrightarrow{b} = ( -
6;4):

    \overrightarrow{a}.\overrightarrow{b} = -
2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án này đúng.

    Phương án \overrightarrow{a} = (7; -
3)\overrightarrow{b} = (3; -
7):

    \overrightarrow{a}.\overrightarrow{b} =
7.3 + ( - 3).( - 7) = 42 \neq 0 suy ra đáp án này sai.

  • Câu 13: Nhận biết

    Tìm khẳng định đúng

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'

  • Câu 14: Thông hiểu

    Tính độ dài của vectơ

    Cho tam giác ABC đều cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC}
ight|.

    Gọi H là trung điểm của BC \Rightarrow AH\bot BC.

    Suy ra AH = \frac{BC\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}.

    Ta lại có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AH} ight| =
2.\frac{a\sqrt{3}}{2} = a\sqrt{3}.

  • Câu 15: Thông hiểu

    Chọn kết luận đúng

    Cho ba điểm A,B,C phân biệt. Khi đó:

    Điều kiện cần và đủ để A,B,C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 16: Thông hiểu

    Tìm mệnh đề đúng

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}

    Ta có

    2\overrightarrow{MN} =
\overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{MB} +
\overrightarrow{BC} + \overrightarrow{MA} +
\overrightarrow{AD}

    = \overrightarrow{AD} +
\overrightarrow{BC} + \left( \overrightarrow{MA} + \overrightarrow{MB}
\right) = \overrightarrow{AD} + \overrightarrow{BC}.

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} \right) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó\ \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 17: Nhận biết

    Tìm câu sai

    Cho ba điểm A,\ B,\ C phân biệt. Đẳng thức nào sau đây là đẳng thức sai?

    Ta có: \overrightarrow{CA} +
\overrightarrow{AB} = \overrightarrow{CB} \neq
\overrightarrow{BC}.

  • Câu 18: Nhận biết

    Xác định tích vô hướng giữa hai vectơ

    Cho tam giác ABC vuông tại A và có AB =c,\ AC = b. Tính \overrightarrow{BA}.\overrightarrow{BC}.

    Ta có:

    \overrightarrow{BA}.\overrightarrow{BC}= BA.BC.\cos\left( \overrightarrow{BA},\overrightarrow{BC} \right) =BA.BC.\cos\widehat{B}

    = c.\sqrt{b^{2} +
c^{2}}.\frac{c}{\sqrt{b^{2} + c^{2}}} = c^{2}

    Cách khác.

    Tam giác ABC vuông tại A suy ra AB\bot AC \Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0

    Ta có:

    \overrightarrow{BA}.\overrightarrow{BC} =\overrightarrow{BA}.\left( \overrightarrow{BA} + \overrightarrow{AC}\right)= {\overrightarrow{BA}}^{2} +\overrightarrow{BA}.\overrightarrow{AC} = AB^{2} = c^{2}

  • Câu 19: Thông hiểu

    Tính độ dài của vectơ

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 20: Vận dụng cao

    Tính giá trị nhỏ nhất của biểu thức

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo