Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 Đề số 3

Đề kiểm tra học kì 1 môn Toán lớp 10 năm học 2020 - 2021 - Đề số 3 được VnDoc biên soạn bao gồm các dạng bài tập và đáp án chi tiết được xây dựng theo trọng tâm chương trình học THPT giúp học sinh ôn tập, củng cố kiến thức, giúp định vị khả năng tư duy logic, khả năng nhận biết. Đây là nền tảng vững chắc giúp các bạn tự tin làm bài trong các kì thi và kiểm tra định kì. Mời các bạn cùng tham khảo chi tiết. Chúc các bạn ôn tập thật tốt!

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 10, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 10 sau: Nhóm Tài liệu học tập lớp 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Đề thi học kì 1 Toán lớp 10 năm học 2020 - 2021 Đề số 3

Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

Câu 1: Xét tính chẵn lẻ của hàm số y=f\left( x \right)=\frac{\sqrt{1-\left| 3x \right|}}{{{x}^{3}}-x}y=f(x)=1|3x|x3x

Câu 2:

1. Cho phương trình: \sqrt{2{{x}^{2}}+mx-3}=x-m2x2+mx3=xm (1)

a. Giải phương trình khi m = 1

b. Với điều kiện nào của m thì phương trình có nghiệm

2. Giải hệ phương trình: \left\{ \begin{matrix}

{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=1 \\

{{\left( x-y \right)}^{2}}-2z\left( x-y \right)=-1 \\

\end{matrix} \right.{x2+y2+z2=1(xy)22z(xy)=1

Câu 3:

1. Cho hàm số y=-{{x}^{2}}-\left( 1-2a \right)x+by=x2(12a)x+b. Xác định các hệ số a, b biết đồ thị hàm số là parabol có đỉnh I\left( \frac{3}{2},\frac{1}{4} \right)I(32,14). Vẽ đồ thị hàm số với các giá trị a, b tìm được.

2. Cho hàm số d: y=\left( {{m}^{2}}-3m+5 \right)x-1+2my=(m23m+5)x1+2m và d’: y=3x-1y=3x1. Tìm các giá trị của m sao cho đồ thị hàm số (d) và (d’) song song với nhau.

Câu 4:

1. Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm AM và P là điểm thuộc AC sao cho 3AP = AC. Chứng minh ba điểm B, I, P thẳng hàng.

2. Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD có A(3,4), C(8,1). Gọi P là trung điểm cạnh BC, Q là giao điểm cạnh BD và AP. Xác định các đỉnh còn lại của hình bình hành ABCD biết Q\left( \frac{13}{3},2 \right)Q(133,2)

Câu 5: Chứng minh rằng với mọi x, y \in \mathbb{R}R ta luôn có:

\frac{x+y}{2}.\frac{{{x}^{2}}+{{y}^{2}}}{2}.\frac{{{x}^{3}}+{{y}^{3}}}{2}\le \frac{{{x}^{6}}+{{y}^{6}}}{2}x+y2.x2+y22.x3+y32x6+y62

Đáp án đề thi học kì 1 môn Toán 10 đề số 3

Câu 1:

y=f\left( x \right)=\frac{\sqrt{1-\left| 3x \right|}}{{{x}^{3}}-x}y=f(x)=1|3x|x3x

Điều kiện xác định: \left\{ \begin{matrix}

1-\left| 3x \right|\ge 0 \\

{{x}^{3}}-x\ne 0 \\

\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}

x\in \left[ \dfrac{-1}{3};\dfrac{1}{3} \right] \\

x\ne 0,x\ne \pm 1 \\

\end{matrix} \right.\Leftrightarrow x\in \left[ \frac{-1}{3};\frac{1}{3} \right]\backslash \left\{ 0 \right\}{1|3x|0x3x0{x[13;13]x0,x±1x[13;13]{0}

TXĐ: D=\left[ \frac{-1}{3};\frac{1}{3} \right]\backslash \left\{ 0 \right\}D=[13;13]{0}

Giả sử x\in D,-x\in DxD,xD ta có:

\begin{align}

& f\left( x \right)=\frac{\sqrt{1-\left| 3x \right|}}{{{x}^{3}}-x} \\

& f\left( -x \right)=\frac{\sqrt{1-\left| -3x \right|}}{{{\left( -x \right)}^{3}}-\left( -x \right)}=\frac{\sqrt{1-\left| 3x \right|}}{-{{x}^{3}}+x}=\frac{\sqrt{1-\left| 3x \right|}}{-\left( {{x}^{3}}-x \right)}=-\frac{\sqrt{1-\left| 3x \right|}}{{{x}^{3}}-x} \\

& \Rightarrow f\left( -x \right)=-f\left( x \right) \\

\end{align}(1)f(x)=1|3x|x3x(2)f(x)=1|3x|(x)3(x)=1|3x|x3+x=1|3x|(x3x)=1|3x|x3x(3)f(x)=f(x)

Vậy hàm số là hàm số lẻ

Câu 2:

1.

a. Với m = 1 thay và phương trình ta được: \sqrt{2{{x}^{2}}+x-3}=x-12x2+x3=x1

Điều kiện: 2{{x}^{2}}+x-3\ge 0\Leftrightarrow x\in \left( -\infty ,\frac{-3}{2} \right]\cup \left[ 1,+\infty \right)2x2+x30x(,32][1,+)

\begin{align}

& \sqrt{2{{x}^{2}}+x-3}=x-1 \\

& \Leftrightarrow \left\{ \begin{matrix}

x-1\ge 0 \\

{{\left( \sqrt{2{{x}^{2}}+x-3} \right)}^{2}}={{\left( x-1 \right)}^{2}} \\

\end{matrix}\Leftrightarrow \left\{ \begin{matrix}

x\ge 1 \\

{{x}^{2}}+3x-4=0 \\

\end{matrix}\Leftrightarrow \left\{ \begin{matrix}

x\ge 1 \\

\left[ \begin{matrix}

x=1\left( TM \right) \\

x=-4\left( L \right) \\

\end{matrix} \right. \\

\end{matrix} \right. \right. \right. \\

\end{align}(4)2x2+x3=x1(5){x10(2x2+x3)2=(x1)2{x1x2+3x4=0{x1[x=1(TM)x=4(L)

Vậy phương trình có nghiệm x = 1

b. \sqrt{2{{x}^{2}}+mx-3}=x-m\Leftrightarrow \left\{ \begin{matrix}

x-m\ge 0 \\

2{{x}^{2}}+mx-3={{\left( x-m \right)}^{2}} \\

\end{matrix} \right.2x2+mx3=xm{xm02x2+mx3=(xm)2

\Leftrightarrow \left\{ \begin{matrix}

x\ge m \\

{{x}^{2}}+3mx-3-{{m}^{2}}=0\text{ (2)} \\

\end{matrix} \right.{xmx2+3mx3m2=0 (2)

Phương trình (1) có nghiệm \Leftrightarrow Phương trình (2) có nghiệm thỏa mãn x\ge mxm

Phương trình (2) luôn có hai nghiệm trái dấu {{x}_{1}}<{{x}_{2}}x1<x2

Phương trình (1) vô nghiệm \Leftrightarrow Phương trình (2) luôn có hai nghiệm thỏa mãn {{x}_{1}}<{{x}_{2}}  < mx1<x2<m

\Leftrightarrow \left\{ \begin{matrix}

f\left( m \right) > 0 \\

\frac{S}{2} < m \\

\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}

3{{m}^{2}}-3 > 0 \\

-\dfrac{3m}{2} < m \\

\end{matrix}\Leftrightarrow m>1 \right.{f(m)>0S2<m{3m23>03m2<mm>1

Do đó (1) có nghiệm khi và chỉ khi m\le 1m1

Còn tiếp

Mời bạn đọc tải tài liệu tham khảo hướng dẫn lời giải chi tiết!

-------------------------------------------------

Trên đây là Đề thi học kì 1 môn Toán 10 năm học 2020 - 2021 Đề số 3 VnDoc.com giới thiệu tới quý thầy cô và bạn đọc . Ngoài ra VnDoc mời độc giả tham khảo thêm tài liệu ôn tập một số môn học: Toán lớp 10, Tiếng anh lớp 10, Vật lí lớp 10, Ngữ văn lớp 10,...

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán lớp 10

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng