Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Trắc nghiệm Liên hệ giữa thứ tự và phép cộng

Trắc nghiệm Đại số 8 bài 1 chương 4

Liên hệ giữa thứ tự và phép cộng là phần nội dung bài 1 chương 4 Đại số 8. Để giúp các em củng cố kiến thức phần này, VnDoc gửi tới các bạn Trắc nghiệm Liên hệ giữa thứ tự và phép cộng. Đây là bài tập trắc nghiệm online cho các bạn trực tiếp làm bài và kiểm tra kết quả ngay sau khi làm xong. Bộ câu hỏi gồm 10 câu hỏi trắc nghiệm Toán 8 sẽ giúp các bạn học sinh ôn tập và củng cố kiến thức được học về Liên hệ giữa thứ tự và phép cộng, từ đó luyện giải Toán 8 hiệu quả. Sau đây mời các bạn làm bài.

Mời các bạn luyện thêm các bài trắc nghiệm khác tại chuyên mục Trắc nghiệm lớp 8 trên VnDoc nhé.

Bạn đã dùng hết 2 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
  • Bài 1:

    Với x, y bất kỳ. Chọn khẳng định đúng?

    Xét hiệu

    P = (x + y)2 - 4xy = x2 + 2xy + y2 - 4xy

    = x2 - 2xy + y2 = (x - y)2

    Mà (x - y)2 ≥ 0; "x,y nên P ≥ 0; "x;y. Suy ra (x + y)2 ≥ 4xy.

  • Bài 2:

    Cho m bất kỳ, chọn câu đúng?

  • Bài 3:

    Biết rằng m > n với m, n bất kỳ, chọn câu đúng?

  • Bài 4.

    Cho x - 3 ≤ y - 3, so sánh x và y. Chọn đáp án đúng nhất?

  • Bài 5:

    Cho x - 5 ≤ y - 5. So sánh x và y?

    Cộng hai vế của bất đẳng thức x - 5 ≤ y - 5 với 5 ta được:

    x - 5 + 5 ≤ y - 5 + 5 ⇒ x ≤ y

  • Bài 6:

    Cho a > 1 > b, chọn khẳng định không đúng?

    Từ a > b, cộng -b vào hai vế ta được a - b > b - b, tức là a - b > 0.

    Do đó D đúng, B sai.

    Ngoài ra A, C đúng vì:

    Cộng cả hai vế của bất đẳng thức a > 1 với (-1) ta được:

    a + (-1) > 1 + (-1) hay a - 1 > 0.

    Cộng cả hai vế của bất đẳng thức 1 > b với -b ta được:

    1 + (-b) > b + (-b) hay 1 - b > 0.

  • Bài 7:

    Cho a + 8 < b. So sánh a - 7 và b - 15?

    Cộng cả hai vế của bất đẳng thức a + 8 < b với (-15) ta được

    a + 8 < b ⇒ a + 8 - 15 < b - 15 ⇒ a - 7 < b - 15

  • Bài 8:

    Với a, b, c bất kỳ. Hãy so sánh 3(a2 + b2 + c2) và (a + b + c)2

    Xét hiệu:

    3(a2 + b2 + c2) - (a + b + c)2

    = 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac

    = 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac

    = (a - b)2 + (b - c)2 + (c - a)2 ≥ 0

    (vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c

    Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.

  • Bài 9:

    Với a, b, c bất kỳ. Hãy so sánh a2 + b2 + c2 và ab + bc + ca?

  • Bài 10:

    Với a, b bất kỳ. Chọn khẳng định sai?

  • Đáp án đúng của hệ thống
  • Trả lời đúng của bạn
  • Trả lời sai của bạn
Bắt đầu ngay
Bạn còn 2 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã dùng hết 2 lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Kiểm tra kết quả Xem đáp án Làm lại
Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
    🖼️

    Trắc nghiệm Toán 8 Kết nối tri thức

    Xem thêm