Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 1: Hàm số lượng giác và phương trình lượng giác nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Giải phương trình lượng giác

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 2: Nhận biết

    Hàm số không xác định trên khoảng nào?

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 3: Vận dụng

    Chọn đáp án đúng

    Cho công thức y
= 3sin\left( \frac{\pi}{180}(x + 60) ight) + 13 biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với 1 \leq x \leq 365 là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.

    Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số y = 3sin\left( \frac{\pi}{180}(x + 60) ight) +
13 đạt giá trị lớn nhất.

    Khi đó sin\left( \frac{\pi}{180}(x + 60)
ight) = 1 \Leftrightarrow x = 30 + k360,k \in Z.

    1 \leq x \leq 365 nên ta có 1 \leq 30 + k360 \leq 365 \Leftrightarrow -
0,08 \leq k \leq 0,93 \Rightarrow k = 0.

    Do đó x = 30 (tháng đầu tiên của năm)

  • Câu 4: Thông hiểu

    Tìm khoảng đồng biến của hàm số

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 5: Thông hiểu

    Chọn kết quả chính xác

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 6: Vận dụng cao

    Tính tổng các nghiệm?

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 7: Vận dụng

    Chọn mệnh đề đúng?

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 8: Nhận biết

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 9: Vận dụng

    Tìm khẳng định đúng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức \sin\frac{\widehat{A}}{2}.cos^{3}\frac{\widehat{B}}{2}
- \sin\frac{\widehat{B}}{2}.cos^{3}\frac{\widehat{A}}{2} = 0. Khẳng định nào sau đây đúng?

    Ta có:

    \sin\frac{\widehat{A}}{2}.\cos^{3}\frac{\widehat{B}}{2}- \sin\frac{\widehat{B}}{2}.\cos^{3}\frac{\widehat{A}}{2} =0

    \Leftrightarrow\dfrac{\sin\dfrac{\widehat{A}}{2}}{\cos^{3}\dfrac{\widehat{A}}{2}} =\dfrac{\sin\dfrac{\widehat{B}}{2}}{\cos^{3}\dfrac{\widehat{B}}{2}}

    \Leftrightarrow\tan\frac{\widehat{A}}{2}\left( 1 + \tan^{2}\frac{\widehat{A}}{2} ight)= \tan\frac{\widehat{B}}{2}.\left( 1 + \tan^{2}\frac{\widehat{B}}{2}ight)

    \Leftrightarrow
\tan\frac{\widehat{A}}{2} = \tan\frac{\widehat{B}}{2} \Leftrightarrow
\frac{\widehat{A}}{2} = \frac{\widehat{B}}{2} \Leftrightarrow
\widehat{A} = \widehat{B}

    Vậy tam giác ABC cân.

  • Câu 10: Vận dụng cao

    Tìm giá trị nguyên của hàm số lượng giác

    Hàm số y = cos^{2}x - \cos x có tất cả bao nhiêu giá trị nguyên?

    Ta có:

    y = cos^{2}x - \cos x = \left( \cosx - \frac{1}{2} ight)^{2} - \frac{1}{4}.

    - 1 \leq \cos x \leq 1

    \begin{matrix}\Leftrightarrow - \dfrac{3}{2} \leq \cos x - \dfrac{1}{2} \leq \dfrac{1}{2}\\\Leftrightarrow 0 \leq \left( \cos x - \dfrac{1}{2} ight)^{2} \leq\dfrac{9}{4} \\\end{matrix}

    \begin{matrix}\Leftrightarrow - \dfrac{1}{4} \leq \left( \cos x - \dfrac{1}{2}ight)^{2} - \dfrac{1}{4} \leq 2 \hfill \\\Leftrightarrow - \dfrac{1}{4} \leq y \leq 2\overset{y\in\mathbb{Z}}{\Rightarrow}y \in \left\{ 0;1 ight\} \hfill\\\end{matrix}

    Nên có 3 giá trị thỏa mãn.

  • Câu 11: Nhận biết

    Tìm đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

    Công thức đúng là: sin(\alpha + \pi) = -
sin\alpha

  • Câu 12: Thông hiểu

    Giải phương trình lượng giác

    Nghiệm của phương trình sinx + cosx = 1 là:

     \begin{matrix}  \sin x + \cos x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \sin \left( {\dfrac{\pi }{4}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \dfrac{\pi }{2} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Tính số đo của góc lượng giác

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 14: Thông hiểu

    PT nào có nghiệm đã cho?

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 15: Thông hiểu

    Đổi số đo từ độ sang radian

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 16: Thông hiểu

    Hàm số nào là hàm số tuần hoàn?

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 17: Nhận biết

    Tìm tập xác định của hàm số

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 18: Thông hiểu

    Đếm số nghiệm

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

    Đáp án là:

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

     Phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x - {{40}^0}} ight) = \sin {60^0}

    \Leftrightarrow \left[ \begin{gathered}  2x - {40^0} = {60^0} + k{360^0} \hfill \\  2x - {40^0} = {180^0} - {60^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  2x = {100^0} + k{360^0} \hfill \\  2x = {160^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  x = {50^0} + k{180^0} \hfill \\  x = {80^0} + k{180^0} \hfill \\ \end{gathered}  ight.

    • TH1: Xét nghiệm x = {50^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {50^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{23}}{{18}} \leqslant k \leqslant \frac{{13}}{{18}}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {130^0} \hfill \\  k = 0 \to x = {50^0} \hfill \\ \end{gathered}  ight..

    • TH2: Xét nghiệm x = {80^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {80^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{13}}{9} \leqslant k \leqslant \frac{5}{9}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {100^0} \hfill \\  k = 0 \to x = {80^0} \hfill \\ \end{gathered}  ight..

    Vậy có tất cả 4 nghiệm thỏa mãn bài toán.

     

  • Câu 19: Nhận biết

    Tìm tập nghiệm?

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 20: Vận dụng

    Tính giá trị biểu thức

    Tính giá trị biểu thức H =
tan10^{0}.tan20^{0}.tan30^{0}....tan80^{0}

    Ta có: \tan x.\tan\left( 90^{0} - xight) = \tan x.\cot x = 1

    H = \left( \tan10^{0}.\tan80^{0}ight).\left( \tan20^{0}.\tan70^{0} ight).\left( \tan30^{0}.\tan60^{0}ight).\left( \tan40^{0}.\tan50^{0} ight)

    H = 1.1.1.1 = 1

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo