Tập giá trị của hàm số lượng giác
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 1: Hàm số lượng giác và phương trình lượng giác nha!
Tập giá trị của hàm số lượng giác
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Chọn kết quả đúng
Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?
Trong 1 giây bánh xe quay được vòng
Suy ra trong 2 giây bánh xe quay được vòng
Vậy góc bánh xe quay được là:
Hàm số không xác định trên khoảng nào?
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Tính số nghiệm của phương trình
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Số nghiệm của phương trình?
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
Với
Với
Vậy có 4 nghiệm thỏa mãn.
Phân tích sự đúng sai của các kết luận
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Tìm đẳng thức đúng
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Chọn mệnh đề sai
Với
mệnh đề nào sau đây sai?
Ta có:
=>
Tìm điều kiện xác định của P
Điều kiện để biểu thức
xác định
Biểu thức xác định khi
Tính giá trị lớn nhất giá trị nhỏ nhất của hàm số
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Tìm PT tương đương
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Chọn mệnh đề đúng?
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Xác định nghiệm phương trình
Nghiệm của phương trình
là:
Ta có
Tính số nghiệm phương trình
Phương trình
có bao nhiêu nghiệm trong khoảng
?
Ta có:
Theo bài ra ta có:
Vậy phương trình có 642 nghiệm.
Điều kiện xác định của hàm số lượng giác
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Xác định số nghiệm của phương trình lượng giác
Số nghiệm trong khoảng
của phương trình
là
Ta có:
.
Với thì
.
Suy ra .
Vậy có 1 nghiệm trong khoảng .
Tính tổng các nghiệm?
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Tính giá trị của P
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Đếm số nghiệm
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: