Tính giá trị của P
Cho
là các góc của tam giác ABC. Khi đó:
![]()
Ta có:
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 1: Hàm số lượng giác và phương trình lượng giác nha!
Tính giá trị của P
Cho
là các góc của tam giác ABC. Khi đó:
![]()
Ta có:
Tìm x
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
Biến đổi biểu thức
Đơn giản biểu thức
, ta có
Ta có:
Tính giá trị biểu thức A
Tính giá trị biểu thức ![]()
Vì nên ta có:
Xác định thời gian thành phố A có nhiều giờ có ánh sáng mặt trời nhất.
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ
của năm 2022 được cho bởi một hàm số
với
và
. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Vì
Ngày có ánh sáng mặt trời nhiều nhất
Do
Với rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện
thì ta biết năm này tháng 2 chỉ có 28 ngày).
Xác định tập giá trị của hàm số
Tập giá trị của hàm số
trên ![]()
Ta có:
Nên
Xác định tam giác ABC
Trong tam giác ABC nếu
thì tam giác ABC là tam giác gì?
Ta có:
Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.
Tính giá trị của biểu thức B
Tính giá trị của biểu thức
là:
Ta có:
Xét tính đúng sai cho mỗi nhận định
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Phân tích sự đúng sai của các kết luận
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Tính giá trị lượng giác
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Tìm chu kì của hàm số
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Đây là nghiệm của PT?
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Giải PT?
Cho phương trình
, nghiệm của phương trình là:
Ta có:
Giải phương trình
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Tìm tập xác định của hàm số
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tìm nghiệm PTLG
Phương trình lượng giác
có nghiệm là ?
Ta có:
Tìm điều kiện xác định của hàm số
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Tập xác định D của hàm số
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Tìm giá trị nguyên của tham số m
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Ta có:
Mặt khác
Vậy để phương trình lượng giác có nghiệm thì
Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Chọn mệnh đề sai
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Chọn công thức đúng
Công thức nào sau đây đúng?
Công thức đúng là:
Tìm sự khác nhau
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Mệnh đề đúng?
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Tính giá trị biểu thức
Cho
. Giá trị
bằng:
Ta có:
Xác định hàm số lẻ
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Tìm tập xác định của hàm số
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Tìm nghiệm của PT
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Chọn kết quả chính xác
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Xác định mệnh đề đúng
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Hàm số chẵn, hàm số lẻ
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Tính giá trị biểu thức
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Chọn kết luận đúng
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày
cho bởi công thức
. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là
?
Độ sâu của mực nước là thì h = 15.
Khi đó
Vì nên
Lại do
Hàm số tuần hoàn
Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?
Hàm số là hàm số không tuần hoàn
Tập xác định
Giả sử
Cho x = 0 và x = π ta được
Điều này trái với định nghĩa T > 0
Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Vậy hàm số là hàm số tuần hoàn
Tính giá trị biểu thức P
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tìm khẳng định đúng
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Tính độ dài cung tròn
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Tìm giá trị nguyên của m để phương trình có nghiệm
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Giải phương trình lượng giác
Phương trình
có nghiệm là:
Giải phương trình:
Chọn đáp án đúng
Trên đường tròn lượng giác, cung có số đo
được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: