Chọn đáp án đúng
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Cánh Diều nha!
Chọn đáp án đúng
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Tính giá trị biểu thức
Biết
. Khi đó
có giá trị bằng:
Ta có:
Ghi đáp án vào ô trống
Cho hàm số
liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Cho hàm số
liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Hàm số xác định tại .
Ta có . Tính
.
Đặt thì
,
thì
.
.
.
Vậy
.
Để hàm số liên tục tại khi
.
Tính tổng T
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Xác định hình tạo bởi các giao tuyến
Cho hình chóp
có đáy
là hình bình hành. Lấy
, mặt phẳng
đi qua
và song song với mặt phẳng
. Khi đó các giao tuyến của mặt phẳng
với các mặt của
là hình gì?
Hình vẽ minh họa
Giao tuyến của với
là
.
Giao tuyến của với
là
.
Từ đó suy ra các giao tuyến của mặt phẳng với các mặt của
là hình thang MNPQ.
Xét tính đúng sai của mỗi kết luận
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Đếm số nghiệm?
Phương trình
có bao nhiêu nghiệm thuộc
?
Ta có:
, mà
.
.
Suy ra ,
.
Vậy có 4044 nghiệm thuộc
.
Tìm khẳng định sai
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Chọn đáp án đúng
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Tính giá trị P
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tìm số vị trí ?
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Ghi đáp án vào ô trống
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Hãy xác định tính đúng sai của mỗi ý a), b), c), d)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Xác định hình tạo bởi các giao tuyến
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấy
. Giả sử
là mặt phẳng đi qua
song song với hai đường thẳng
và
. Xác định giao tuyến của
với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có (2)
Từ (1) và (2) => Các giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Chọn đáp án sai
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Tìm tất cả các nghiệm?
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Tìm vị trí tương đối của hai đường thẳng
Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt
và
trong không gian?
Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt và
là:
cắt
song song với
chéo nhau với
Giải phương trình
Giải phương trình
?
Phương trình
.
Tính giá trị của biểu thức
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Hàm số không liên tục
Hàm số nào sau đây không liên tục tại
?
Hàm số có tập xác định
nên không liên tục tại
.
Tìm giao tuyến của hai mặt phẳng (MSB) và (SAC)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:
Hình vẽ minh họa
Gọi I là giao điểm của AC và BM
Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)
=> Giao tuyến cần tìm chính là đường thẳng SI.
Tỉ số độ dài cạnh AB và CD
Cho hình chóp
có đáy
là hình thang với đáy nhỏ
. Lấy các điểm
sao cho
,
là trọng tâm tam giác
. Để giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình bình hành thì tỉ số độ dài cạnh
bằng:
Hình biểu diễn
Ta có: với
và đi qua
, song song với
.
=> Giao tuyến của mặt phẳng với các mặt của hình chóp
là hình thang
. Tính
Để hình thang là hình bình hành thì
Tính giá trị biểu thức
Giá trị của
là:
Ta có:
Tính giới hạn
bằng
Chọn đáp án sai
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Xét tính đúng sai của mỗi khẳng định
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Tìm công sai của cấp số cộng
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Tìm số hạng tiếp theo
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Số hạng thứ?
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Số hạng tổng quát
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Tính giá trị lớn nhất của biểu thức
Gọi T là tập giá trị của hàm số
. Tìm tổng các giá trị nguyên của T.
Ta có:
Vì
Do đó tổng các giá trị nguyên của T là 7.
Tìm tỉ số độ dài hai cạnh
Cho hình hộp
có
là trung điểm của
,
. Tính tỉ số độ dài hai cạnh
và
.
Hình vẽ minh họa
Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến
và
.
Theo tính chất hình hộp ta có nên
Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.
Vậy hay
.
Xác định cấp số cộng
Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?
Xét dãy số
Ta có:
Vậy dãy số là một cấp số cộng với
Tính giới hạn của dãy số
Giới hạn
bằng
Ta có:
Tính giá trị của giới hạn
Giá trị của giới hạn
là:
Ta có:
Đường thẳng nào song song với d
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Đường thẳng nào song song với
trong các đường thẳng dưới đây?
Hình vẽ minh họa
Ta có:
=> hay
Vậy giao tuyến của hai mặt phẳng và
là đường thẳng
song song với đường thẳng
.
Chọn kết luận đúng
Trong không gian, cho ba đường thẳng
. Trong các mệnh đề sau mệnh đề nào đúng?
Nếu và
chéo nhau thì
và
không cùng thuộc một mặt phẳng.
Tính giới hạn của dãy số
Tính giới hạn của hàm số
.
Ta có:
Chọn đáp án đúng
Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?
Theo tính chất của phép chiếu song song ta thấy:
Hình chiếu của hình chữ nhật không thể là hình thang có hai đáy không bằng nhau.
Tính tổng?
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Ghi đáp án vào ô trống
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số ![]()
Đáp án: 2
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số ![]()
Đáp án: 2
Hình vẽ minh họa
+ Cho
Trong mặt phẳng hai đường thẳng
không song song nên gọi
là giao điểm của hai đường thẳng
và
. Khi đó
.
+ Ta thấy
+ Trong . Khi đó
.
Xét tam giác , áp dụng định lí Menelaus có:
Xét tam giác , áp dụng định lí Menelaus có:
Vậy .
Chọn đáp án đúng
Cho hàm số f(x) liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.
Khi đó
Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)
Tập các định D của hàm số
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Ghi đáp án vào ô trống
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

Kí hiệu
là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

Kí hiệu
là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Ta có:
Ghi đáp án vào ô trống
Cho cấp số nhân
thỏa mãn
. Tính ![]()
Đáp án: 64
Cho cấp số nhân
thỏa mãn
. Tính ![]()
Đáp án: 64
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: