Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 4 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm phát biểu mới

    Trong các phát biểu sau, phát biểu nào đúng?

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.

    Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.

    Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.

  • Câu 2: Vận dụng

    Tính tỉ số độ dài

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 3: Vận dụng

    Tìm giao tuyến giữa hai mặt phẳng

    Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNO) và (ABCD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    => MN // AB

    Ta lại có \left( {MNO} ight) \cap \left( {ABCD} ight) = O

    => Giao tuyến của hai măt phẳng (MNO) và (ABCD) là đường thẳng đi qua O và song song với AB.

  • Câu 4: Nhận biết

    Tìm câu đúng

    Khẳng định nào sau đây là đúng?

    Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.

  • Câu 5: Thông hiểu

    Chọn mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 6: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 7: Nhận biết

    Chọn khẳng định sai

    Trong các mệnh đề sau mệnh đề nào sai?

    Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.

  • Câu 8: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

  • Câu 9: Thông hiểu

    Tính diện tích tứ giác

    Cho hình chóp S.ABCD có các cạnh bên bằng nhau, đáy ABCD là hình vuông cạnh bằng 10cm. Lấy M \in SA sao cho 3SM = 2SA. Giả sử mặt phẳng (\gamma) là mặt phẳng đi qua điểm M và song song với AB,AC. Các giao tuyến của (\gamma) với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\gamma) \\
(\gamma)//(ABCD) \\
\end{matrix} ight.. Gọi N,P,Q lần lượt là các giao điểm của (\gamma) với SB,SC,SD thì \left\{ \begin{matrix}
MN//AB \\
NP//BC \\
NP//BC \\
\end{matrix} ight..

    Do đó MNPQ là hình vuông và \frac{MN}{AB} = \frac{SM}{SA} =
\frac{2}{3}

    Vậy diện tích tứ giác là S =
\frac{400}{9}cm^{2}.

  • Câu 10: Thông hiểu

    Tính tỉ số giữa hai cạnh SQ, SA

    Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy nhỏ là BC, lấy điểm P \in SD, sao cho PD = 2SP. Gọi Q = SA \cap (PBC) . Tính tỉ số giữa hai cạnh SQSA.

    Hình vẽ minh họa

    Xét ba mặt phẳng (PBC);(SAD);(ABCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là PQ;AD;BC.

    Theo định lí về giao tuyến của ba mặt phẳng thì PQ;AD;BC đồng quy hoặc đôi một song song.

    AD//BC \Rightarrow PQ//AD

    Do đó \frac{SQ}{SA} = \frac{SP}{SD} =
\frac{1}{3}

  • Câu 11: Nhận biết

    Tìm câu sai

    Mệnh đề nào dưới đây SAI?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.

  • Câu 12: Nhận biết

    Hoàn thành mệnh đề

    Có duy nhất một mặt phẳng đi qua

    Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.

    Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.

    Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.

    Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."

  • Câu 13: Thông hiểu

    Tìm giao tuyến các mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD tâm O. Gọi M,N lần lượt là trung điểm của SB,AB. Xác định các giao tuyến của (MNO) với các mặt của S.ABCD. Hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh hoạ

    Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau

    Qua M kẻ PQ // NO với Q ∈ SC.

    Kéo dài NO cắt CD tại P.

    => Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.

    Tứ giác MNPQ có MN // NP

    => Tứ giác MNPQ là hình thang.

  • Câu 14: Vận dụng

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 15: Thông hiểu

    Chọn mệnh đề sai

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 16: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau khẳng định nào sai?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Chọn câu đúng:

    "Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.

    Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.

    Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.

    Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.

  • Câu 18: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    - Xác định M,N :

    Trong mặt phẳng (SAC), kẻ CI cắt SA tại M;

    Trong mặt phẳng (SBD), kẻ DI cắt SB tại N.

    \left\{ \begin{matrix}
M \in CI,CI \subset (ICD) \\
M \in SA \\
\end{matrix} \Rightarrow M = SA \cap (ICD) ight..

    Tương tự: \left\{ \begin{matrix}
N \in DI,DI \subset (ICD) \\
N \in SB \\
\end{matrix} \Rightarrow N = SB \cap (ICD) ight..

    -Tính MN theo a :

    Gọi E là trung điểm BN,OE là đường trung bình của tam giác BDN \Rightarrow OE//DN.

    Trong tam giác SOE, ta có NI qua trung điểm I của SONI//OE,N là trung điểm của SE.

    Hình vẽ minh họa

    -Vậy SN = NE = EB hay SN = \frac{1}{3}SB.

    Hoàn toàn tương tự, ta chứng minh được SM
= \frac{1}{3}SA.

    Khi đó hai tam giác SMN,SAB đồng dạng vì có góc S chung và \frac{SM}{SA} = \frac{SN}{SB} =
\frac{1}{3}.

    Xét tam giác SAB, theo định lí Thalès, ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{1}{3} \Rightarrow MN = \frac{AB}{3} = \frac{a}{3}.

    - Chứng minh SK//BC//AD :

    Dễ thấy S là điểm chung của hai mặt phẳng (SBC)(SAD).

    Ta có: \left\{ \begin{matrix}
K \in CN,CN \subset (SBC) \\
K \in DM,DM \subset (SAD) \\
\end{matrix} \Rightarrow K \in (SBC) \cap (SAD) ight..

    Vì vậy SK = (SBC) \cap
(SAD).

    Khi đó: \left\{ \begin{matrix}
SK = (SBC) \cap (SAD) \\
BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD. \\
BC//AD \\
\end{matrix} ight.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

  • Câu 19: Nhận biết

    Chọn khẳng định sai

    Cho hình chóp S.ABC. Lấy M là trung điểm của các đoạn thẳng SA, N là trung điểm của SB, P \in
SC sao cho \frac{PS}{PC} =
2. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(MNP) \cap (SAC) = MP \\
(MNP) \cap (SAB) = MN \\
(MNP) \cap (SBC) = NP \\
\end{matrix} ight.

    Vậy các giao tuyến tạo bởi (MNP) và hình chóp S.ABC tạo thành là tam giác MNP.

  • Câu 20: Thông hiểu

    Tìm khẳng định sai

    Chọn khẳng định sai trong các khẳng định sau.

    Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”

    Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo