Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Hàm số liên tục Cánh Diều

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Hàm số liên tục sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm khẳng định đúng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 2: Thông hiểu
    Chọn khẳng định đúng

    Biết rằng f(x) =\left\{ \begin{matrix}\dfrac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ khi\ x eq 1 \\\end{matrix} ight. liên tục trên \lbrack 0;1brack với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?

    Hướng dẫn:

    Ta có:

    Hàm số xác định và liên tục trên \lbrack
0;1brack

    Khi đó f(x) liên tục trên \lbrack 0;1brack khi và chỉ khi \lim_{x ightarrow 1^{-}}f(x) = f(1)\ \ \
(*)

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} - 1}{\sqrt{x} - 1} = \lim_{x ightarrow 1^{-}}\left\lbrack (x +
1)\left( \sqrt{x} + 1 ight) ightbrack = 4

    (*) \Leftrightarrow a = 4

  • Câu 3: Thông hiểu
    Chọn khẳng định đúng

    Xét tính liên tục của hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{x - 1}}{{\sqrt {2 - x}  - 1}}{\text{        khi }}x < 1} \\ 
  { - 2x{\text{   khi }}x \geqslant 1} 
\end{array}} ight.. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số liên tục trên các khoảng ( -
\infty;1),(1; + \infty)

    Ta có:

    f(1) = - 2

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}( - 2x) = - 2

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x - 1}{\sqrt{2 - x} - 1} = \lim_{x ightarrow
1^{-}}\left\lbrack - \left( \sqrt{2 - x} + 1 ight) ightbrack = -
2

    => Hàm số liên tục tại x =
1

    Vậy hàm số liên tục trên tập số thực.

  • Câu 4: Thông hiểu
    Xác định khoảng liên tục của hàm số

    Xác định khoảng liên tục của hàm số f(x) = \left\{ \begin{matrix}
\cos\frac{\pi x}{2}\ \ \ \ \ \ \ \ khi\ |x| \leq 1 \\
x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ |x| > 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Hàm số liên tục trên các khoảng ( -
\infty; - 1),(1; + \infty);( - 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} \left( {x - 1} ight) =  - 2 \hfill \\
  f\left( { - 1} ight) = 0 \hfill \\ 
\end{gathered}  ight.

    => Hàm số gián đoạn tại x = -
1

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  f\left( 1 ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \cos \dfrac{{\pi x}}{2} = 0 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
1

  • Câu 5: Thông hiểu
    Tính số điểm gián đoạn của hàm số

    Số điểm gián đoạn của hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\begin{matrix}
x^{2} + 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ 0 \leq x \leq 2 \\
3x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 2 \\
\end{matrix} \\
\end{matrix} ight. là:

    Hướng dẫn:

    Hàm số xác định trên \mathbb{R}

    Dễ thấy hàm số liên tục trên mỗi khoảng (
- \infty;0),(0;2),(2; + \infty)

    Ta có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x} ight) = 0 \hfill \\
  f\left( 0 ight) = 1 \hfill \\ 
\end{matrix}  ight.

    => Hàm số gián đoạn tại x =
0

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 1} ight) = 5 \hfill \\
  f\left( 2 ight) = 5 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x - 1} ight) = 5 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
2

    Vậy có 1 điểm gián đoạn.

  • Câu 6: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 7: Nhận biết
    Tính giá trị của M.n

    Cho hàm số y =
f(x) liên tục trên đoạn \lbrack -
1;2brack và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack. Giá trị của M.n là:

    Hướng dẫn:

    Hàm số y = f(x) liên tục trên \lbrack - 1;2brack.

    Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1

    Vậy M.n = -3

  • Câu 8: Thông hiểu
    Tìm giá trị thực của tham số m

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x = 1.

    Hướng dẫn:

    Ta có:

    f(1) = m + 3

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{3} - x^{2} + 2x - 2}{x - 1}

    = \lim_{x ightarrow1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1} = \lim_{x ightarrow1}\left( x^{2} + 2 ight) = 3

    Hàm số f(x) liên tục tại x = 1

    = > m + 3 = 3 = > m =
0

  • Câu 9: Thông hiểu
    Tìm giá trị thực của tham số a

    Tìm giá trị thực của tham số a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 1}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x_{0} = 1.

    Hướng dẫn:

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{2} - 1}{x - 1}= \lim_{x ightarrow 1}\frac{(x -1)(x + 1)}{x - 1} = \lim_{x ightarrow 1}(x + 1) = 1

    Hàm số f(x) liên tục tại x = 1

    = > a = 2

  • Câu 10: Nhận biết
    Điều kiện cần và đủ để hàm số liên tục

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Hướng dẫn:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 11: Nhận biết
    Hãy chọn kết luận đúng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Hướng dẫn:

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 12: Vận dụng cao
    Tìm số giao điểm của hàm số với trục hoành

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hướng dẫn:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 13: Thông hiểu
    Mệnh đề nào dưới đây sai

    Cho hàm số y =
f(x)y = g(x) là hai hàm số liên tục tại điểm x_{0}. Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Xét trường hợp y = g(x) liên tục tại x_{0}g\left( x_{0} ight) = 0 thì hàm số y = \frac{f(x)}{g(x)} không xác định tại x_{0}.

  • Câu 14: Thông hiểu
    Hàm số nào dưới đây không liên tục

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Hướng dẫn:

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 15: Nhận biết
    Hàm số đã cho liên tục trên khoảng nào

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hướng dẫn:

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (53%):
    2/3
  • Vận dụng (7%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Cánh Diều

Xem thêm