Chọn khẳng định đúng
Cho hình chóp tứ giác
,
. Giả sử mặt phẳng
bất kì cắt các cạnh
lần lượt tại
. Chọn khẳng định đúng trong các khẳng định sau.
Hình vẽ minh hoạ
Ta thấy:
=> Các đường thẳng đồng quy.
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song nha!
Chọn khẳng định đúng
Cho hình chóp tứ giác
,
. Giả sử mặt phẳng
bất kì cắt các cạnh
lần lượt tại
. Chọn khẳng định đúng trong các khẳng định sau.
Hình vẽ minh hoạ
Ta thấy:
=> Các đường thẳng đồng quy.
Tìm mặt phẳng cố định song song với MN
Cho hình lập phương
cạnh bằng
. Lấy các điểm
sao cho
. Khi giá trị
thay đổi, đường thẳng
luôn song song với mặt phẳng cố định nào sau đây?
Hình vẽ minh họa
Áp dụng định lí Ta – lét đảo cho và
. Từ tỉ lệ
Ta suy ra cùng song song với một mặt phẳng
nào đó.
Ta chọn mặt phẳng chứa
và song song với
.
Mặt phẳng chính là mặt phẳng
và là mặt phẳng cố định.
Hay
Chọn mệnh đề sai
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Tính tỉ số giữa hai cạnh SQ, SA
Cho hình chóp
có đáy
là hình thang có đáy nhỏ là
, lấy điểm
, sao cho
. Gọi
. Tính tỉ số giữa hai cạnh
và
.
Hình vẽ minh họa
Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Do đó
Ghi đáp án vào ô trống
Cho hình chóp
có đáy là hình thang với
. Gọi
là trọng tâm của tam giác
;
là điểm thuộc đoạn
sao cho
. Tìm
để
.
Đáp án: 2
Cho hình chóp
có đáy là hình thang với
. Gọi
là trọng tâm của tam giác
;
là điểm thuộc đoạn
sao cho
. Tìm
để
.
Đáp án: 2
Hình vẽ minh họa
Gọi I là trung điểm cạnh AD
Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q.
Dễ thấy .
Do đó:
.
Mặt khác, tam giác đồng dạng với tam giác
nên
Suy ra .
.
Từ và
.
Vậy
.
Xét tính đúng sai của mỗi khẳng định
Cho hình chóp
có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a)
. Đúng||Sai
b)
với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là
. Đúng||Sai
Cho hình chóp
có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a)
. Đúng||Sai
b)
với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là
. Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có nên
Mà
b) Đúng
Ta có:
Mà
c) Sai
Gọi là mặt phẳng qua
và song song với
Vì nên
Ta có:
với
Ta có:
Vậy hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tam giác
.
d) Đúng
Thiết diện của mặt phẳng qua và song song với
là tam giác
.
Áp dụng định lý Ta-lét trong tam giác ta có:
Tương tự ta có
Diện tích tam giác đều có cạnh bằng
là:
.
Tìm câu sai
Mệnh đề nào dưới đây SAI?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.
Tìm khẳng định sai
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Đáp án đúng vì MN // AD do trong tam giác SAD có MN là đường trung bình mà BC// AD nên MN // BC
Đáp án đúng vì ON là đường trung bình của tam giác SBD
Đáp án đúng vì OM là đường trung bình của tam giác SAC
Đáp án sai vì giả sử ON //SC mà OM //SC nên M ≡ N vô lí.
Tìm phát biểu đúng, phát biểu sai
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn ![]()
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng
và mặt phẳng
là một hình thang. Sai||Đúng
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn ![]()
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng
và mặt phẳng
là một hình thang. Sai||Đúng
Hình vẽ minh họa
Xét tam giác DBC có
Xét tam giác ABC có:
Suy ra ba điểm O; K; J thẳng hàng
Suy ra đúng
Tương tự ta cũng chúng minh được (Vì
)
Suy ra
Gọi F là trung điểm của SA khi đó
Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.
Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.
Tìm mệnh đề sai
Trong các mệnh đề sau mệnh đề nào sai:
Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".
Xác định giao tuyến của hai mặt phẳng
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Chọn khẳng định sai
Cho hai hình bình hành ABCD và ABEF không đồng phẳng có tâm lần lượt là I và J. Chọn
khẳng định sai.
Hình vẽ minh họa
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(ADF) và IJ / / DF đúng.
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(CEB) đúng.
Vậy IJ / / ADsai
Chọn phát biểu đúng
Cho hình tứ diện ABCD, phát biểu nào sau đây là đúng?
Phương án "AC và BD cắt nhau" sai vì nếu AC cắt BD thì 4 điểm A, B, C, D đồng phẳng, điều này mẫu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AC và BD không có điểm chung" đúng vì nếu chúng có điểm chung thì A, B, C, D không thể là 4 đỉnh của một tứ diện
Phương án "Tồn tại một mặt phẳng chứa AD và BC" sai vì nếu có một mặt phẳng chứa AD và BC thì 4 điểm A, B, C, D đồng phẳng, điều này mâu thuẫn với A, B, C, D là 4 đỉnh của một tứ diện.
Phương án "AB và CD song song với nhau" sai.
Chọn hình vẽ phù hợp yêu cầu bài toán
Hình nào sau đây là hình biểu diễn của hình chóp
với
là hình bình hành?
Hình biểu diễn của hình chóp đáy là hình bình hành là hình
Chọn khẳng định đúng
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có:
và d đi qua S
Xét tính đúng sai của mỗi kết luận
Cho hình chóp
có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a)
Đúng||Sai
b) Tứ giác
là hình thang có đáy
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Cho hình chóp
có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a)
Đúng||Sai
b) Tứ giác
là hình thang có đáy
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có là đường trung bình của tam giác
mà
nên
b) Sai
Ta có
Gọi
Ta có
Vậy là hình bình hành
c) Đúng
Gọi là giao điểm của
và
trong
, ta có
là trung điểm
Vậy là đường trung bình của tam giác
Ta có
d) Đúng
Gọi là trung điểm
ta có
Ta có
Chọn khẳng định đúng
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Tìm giao điểm đường thẳng với mặt phẳng
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Ghi đáp án vào ô trống
Cho hình bình hành
. Qua
,
,
,
lần lượt vẽ các nửa đường thẳng
,
,
,
ở cùng phía so với mặt phẳng
, song song với nhau và không nằm trong
. Một mặt phẳng
cắt
,
,
,
tương ứng tại
,
,
,
sao cho
,
,
. Tính
.
Đáp án: 2
Cho hình bình hành
. Qua
,
,
,
lần lượt vẽ các nửa đường thẳng
,
,
,
ở cùng phía so với mặt phẳng
, song song với nhau và không nằm trong
. Một mặt phẳng
cắt
,
,
,
tương ứng tại
,
,
,
sao cho
,
,
. Tính
.
Đáp án: 2
Hình vẽ minh họa
Do cắt mặt phẳng
theo giao tuyến
; cắt mặt phẳng
theo giao tuyến
, mà hai mặt phẳng
và
song song nên
.
Tương tự có nên
là hình bình hành.
Gọi ,
lần lượt là tâm
và
.
Dễ dàng có là đường trung bình của hai hình thang
và
nên
.
Từ đó ta có .
Bổ sung điều kiện cho hình chóp tứ giác
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Hình chóp
cần thêm điều kiện gì để tứ giác
là hình vuông?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Để là hình vuông thì
suy ra hình chóp
có mặt bên
vuông cân tại
.
Xác định giao tuyến đường thẳng và mặt phẳng
Cho hình chóp
có đáy
là một tứ giác lồi có
và
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng:
Hình vẽ minh họa
Giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Chọn khẳng định đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Ta có:
(đường trung bình 4SAD)
(đường trung bình 4BAD)
=> O, N, M, P cùng nằm trong một mặt phẳng.
Tìm khẳng định đúng
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."
Xác định giao tuyến của hai mặt phẳng
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Xác định hình chiếu của điểm M
Cho lăng trụ
. Lấy
là trung điểm của
. Xác định hình chiếu của điểm
lên mặt phẳng
theo phương chiếu
là:
Hình vẽ minh họa

Gọi là trung điểm của
. Ta có:
Vậy hình chiếu song song của điểm lên
theo phương chiếu
là điểm
.
Xét tính đúng sai của các khẳng định
Cho hình chóp
có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a)
Đúng||Sai
b) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng
và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Đúng||Sai
Cho hình chóp
có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a)
Đúng||Sai
b) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng
và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Đúng||Sai
b) Xác định giao tuyến của hai mặt phẳng và
:
Ta có:
Suy ra , với
là đường thẳng qua
và
.
Hình vẽ minh họa
c) Xác định giao tuyến của hai mặt phẳng và
:
Ta có: .
Khi đó:
Suy ra là đường thẳng qua
và
.
d) Xác định giao tuyến của hai mặt phẳng và
:
Ta có .
Xét tam giác , ta có
là đường trung bình
.
Khi đó:
Suy ra là đường thẳng qua
và
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD)
Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là
Hình vẽ minh họa
Ta có S là điểm chung thứ nhất.
Gọi I là giao điểm của AB và CD suy ra I là điểm chung thứ hai.
Vậy (SAB) ∩ (SCD) = SI
Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng SI với I là giao điểm của AB và CD.
Tìm số đường thẳng
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Tính số cạnh của bát giác
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Chọn khẳng định đúng
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

Gọi E là trung điểm của AB
Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:
Theo định lí Ta - lét ta có: (1)
Mà (2)
Từ (1) và (2) =>
Tìm giao tuyến hai mặt phẳng
Cho tứ diện
. Gọi
tương ứng là hai điểm bất kì trên các đoạn thẳng
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có:
Có bao nhiêu mệnh đề đúng
Cho tứ diện
. Gọi
lần lượt là trọng tâm tam giác
và
. Xét các mệnh đề sau:
![]()
![]()
![]()
Các mệnh đề đúng là:
Gọi lần lượt là trung điểm
.
Ta có
nên mệnh đề
đúng.
Ta lại có:
=> Mệnh đề đúng
Mặt khác nên mệnh đề
sai.
Chọn mệnh đề đúng
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm của tam giác
và
. Mệnh đề nào dưới đây đúng?
Hình vẽ minh họa
Giả sử là trung điểm của
.
Ta có:
Xác định mệnh đề đúng
Xác định mệnh đề đúng trong các mệnh đề sau.
Khẳng định đúng là: “Nếu hai mặt phẳng và
song song với nhau thì mọi đường thẳng nằm trong
đều song song với
.”.
Chọn khẳng định đúng
Khẳng định nào sau đây đúng khi nói về mặt phẳng?
Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.
Tính diện tích tứ giác
Cho hình chóp
có các cạnh bên bằng nhau, đáy
là hình vuông cạnh bằng 10cm. Lấy
sao cho
. Giả sử mặt phẳng
là mặt phẳng đi qua điểm
và song song với
. Các giao tuyến của
với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:
Hình vẽ minh họa
Ta có: . Gọi
lần lượt là các giao điểm của
với
thì
.
Do đó là hình vuông và
Vậy diện tích tứ giác là .
Ghi đáp án vào ô trống
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Chọn kết luận đúng
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: