Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có MN là đường trung bình của tam giác SAB \Rightarrow MN//ABAB//CD nên MN//CD

    b) Sai

    Ta có \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB//CD \\
AB \subset (SAB),CD \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
d = (SAB) \cap (SCD) \\
S \in d \\
d//AB//CD \\
\end{matrix} ight.

    Gọi I = AN \cap d \Rightarrow \left\{
\begin{matrix}
I \in AN \\
I \in d,d \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow I = AN \cap
(SCD)

    Ta có SI//BA \Rightarrow \frac{SI}{AB} =
\frac{SN}{NB} = 1

    \Rightarrow SI = AB \Rightarrow SI =
CD

    Vậy SICD là hình bình hành

    c) Đúng

    Gọi F là giao điểm của AEBC trong (ABCD), ta có

    AD//CF \Rightarrow \frac{AE}{EF} =
\frac{ED}{CE} = 1

    \Rightarrow E là trung điểm AF

    Vậy ME là đường trung bình của tam giác SAF

    \Rightarrow EM//SF

    Ta có \left\{ \begin{matrix}
ME//SF \\
ME ⊄ (SCD) \\
SF \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow ME//(SCD)

    d) Đúng

    Gọi E là trung điểm CD ta có

    \frac{EH}{ES} = \frac{EG}{EB}\left( =
\frac{1}{3} ight) \Rightarrow GH//SB

    Ta có \left\{ \begin{matrix}
GH//SB \\
SB \subset (SBD) \\
GH ⊄ (SBD) \\
\end{matrix} ight.\  \Rightarrow GH//(SBD)

  • Câu 2: Thông hiểu

    Hoàn thành mệnh đề

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

  • Câu 3: Vận dụng

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Hình vẽ minh họa

    Trong mặt phẳng (BCD), gọi I = RQ \cap BD.

    Trong (ABD), gọi S = PI \cap AD \Rightarrow S = AD \cap (PQR).

    Trong mặt phẳng (BCD), dựng DE//BC \Rightarrow DE là đường trung bình của tam giác IBR.

    \Rightarrow \  D là trung điểm của BI.

    Trong (ABD), dựng DF//AB \Rightarrow \frac{DF}{BP} = \frac{1}{2}
\Rightarrow \frac{DF}{PA} = \frac{1}{2} \Rightarrow \frac{SA}{SD} =
2.

  • Câu 4: Thông hiểu

    Tìm giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

  • Câu 5: Nhận biết

    Chọn khẳng định đúng

    Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?

    Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy a song song d

  • Câu 6: Thông hiểu

    Xác định tính đúng sai của các phát biểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 7: Nhận biết

    Tìm mệnh đề sai

    Mệnh đề nào trong các mệnh đề sau đây là sai?

     Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."

  • Câu 8: Thông hiểu

    Tìm giao tuyến d của hai mặt phẳng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm ADAC, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng (GMN)(BCD).

    Hình vẽ minh họa

    Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G

    => Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).

  • Câu 9: Nhận biết

    Điều kiện được một mặt phẳng xác định

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 10: Vận dụng

    Tính chu vi hình p

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3\sqrt{2}SA = SD = 3, SB = SC = 3\sqrt{3}. Lấy M,N lần lượt là trung điểm của SA,SD, lấy P
\in AB,AP = 2. Giả sử hình \wp tạo bởi các giao tuyến của mặt phẳng (MNP) với các mặt bên của hình chóp. Tính chu vi của hình \wp.

    Hình vẽ minh họa

    Ta có: AD//(MNP) => Giao tuyến của (MNP)(ABCD) cũng song song với AD.

    Xét mặt phẳng (ABCD) kẻ PQ//AD;Q \in CD

    => Hình \wp là hình thang MNPQ.

    Ta có: MN là đường trung bình của tam giác SAD

    => MN = \frac{AD}{2} =
\frac{3\sqrt{2}}{2}

    Ta có: AB^{2} + SA^{2} = SB^{2} nên tam giác SAB vuông tại A

    Lại có: MA = \frac{3}{2};AP =
2

    \Rightarrow MP^{2} = AP^{2} + MA^{2} =
\frac{25}{4}

    \Rightarrow MP =
\frac{5}{2}

    PQ//AD \Rightarrow PQ = AD =
3\sqrt{2}

    Chứng minh tương tự MP ta tính được NQ = \frac{5}{2}

    => Chu vi hình \wp là: MN + NQ + PQ + PM = 5 +
\frac{9\sqrt{2}}{2}

  • Câu 11: Thông hiểu

    Điền đáp án vào ô trống

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 12: Vận dụng

    Tìm hình chiếu của tam giác C'MN

    Cho hộp chữ nhật ABCD.A'B'C'D'O,O' lần lượt là tâm của ABCD,A'B'C'D' . Trung điểm của AB,CD lần lượt là M,N. Xác định hình chiếu của tam giác C'MN qua phép chiếu song song phương AO' lên mặt phẳng (ABCD).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AO = C'O' \\
C'O'//AO \\
\end{matrix} ight. nên tứ giác O'C'OA là hình bình hành.

    \Rightarrow
C'O//AO'

    Do đó hình chiếu của điểm O' qua phép chiếu song song theo phương O'A lên mặt phẳng (ABCD) là điểm O.

    Mặt khác M,N thuộc mặt phẳng (ABCD) nên hình chiếu của M,N qua phép chiếu song song O'A lên mặt phẳng (ABCD) lần lượt là điểm MN.

    Vậy qua phép chiếu song song theo phương AO' lên mặt phẳng (ABCD) thì hình chiếu của tam giác C'MN là đoạn thẳng MN.

  • Câu 13: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 14: Nhận biết

    Tính giá trị của biểu thức

    Cho tứ diện S.\  ABC. Trên SA,SC lần lượt lấy các điểm MN sao cho MN cắt AC tại E. Điểm E không thuộc mặt phẳng nào trong các mặt phẳng sau?

    Hình vẽ minh họa

    Do E \in AC \Rightarrow E \in
(SAC)E \in (ABC).

    Do E \in MN \Rightarrow E \in
(BMN).

  • Câu 15: Thông hiểu

    Chọn đáp án đúng

    Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (A'BD) song song với mặt phẳng

    Hình vẽ minh họa

    BCD'A' là hình bình hành, ta có BA'\ //\ CD' (1)

    BDD'B' là hình bình hành, ta cóBD\ //\ B'D' (2)

    Mặt khác: BA' \cap BD = B,\ \ \
CD' \cap B'D' = D' (3)

    Từ (1); (2); (3) \Rightarrow(A'BD)//(CB'D'), suy ra phương án cần tìm là: (CB'D').

  • Câu 16: Thông hiểu

    Tìm giao tuyến các mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD tâm O. Gọi M,N lần lượt là trung điểm của SB,AB. Xác định các giao tuyến của (MNO) với các mặt của S.ABCD. Hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh hoạ

    Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau

    Qua M kẻ PQ // NO với Q ∈ SC.

    Kéo dài NO cắt CD tại P.

    => Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.

    Tứ giác MNPQ có MN // NP

    => Tứ giác MNPQ là hình thang.

  • Câu 17: Nhận biết

    Chọn mệnh đề sai

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.

    Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”

  • Câu 18: Thông hiểu

    Tìm ảnh của A, B' qua phép chiếu song song

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD mặt phẳng chiếu (BCC'B') lần lượt là:

    Hình vẽ minh họa

    Ta có: AB//CD nên ảnh của điểm A qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B.

    Mặt khác điểm B' \in
(BCC'B') nên ảnh của B' qua qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B'.

  • Câu 19: Nhận biết

    Chọn mệnh đề đúng

    Cho hai đường thẳng ab lần lượt nằm trên hai mặt phẳng song song (P)(Q).

    Mệnh đề đúng là: "Nếu ab không song song với nhau, điểm M không nằm trên (P)(Q) thì luôn có duy nhất một đường thẳng đi qua M cắt cả ab ."

  • Câu 20: Vận dụng

    Xác định thiết diện

    Cho tứ diện ABCD. Lấy M là một điểm thuộc miền trong của tam giác ABC. Gọi (∝) là mặt phẳng qua M và song song với các đường thẳng AB và CD. Thiết diện tạo bởi (∝) và tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Ta có: (∝) //AB nên giao tuyến (∝) và (ABC) là đường thẳng song song với AB.

    Xét (ABC) ta có:

    Qua M kẻ EF // AB (1)

    Ta có: Giao tuyến của (ABC) và (∝) là EF

    Tương tự xét (BCD) qua E kẻ EH // CD (2) suy ra giao tuyến của (∝) và (BCD) là HE

    Xét mặt phẳng (ABD) kẻ HG // AB (3)

    => Giao tuyến của (∝) và (ABD) là HG

    Thiết diện tạo bởi (∝) và hình chóp ABCD là tứ giác EFGH

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( \alpha  ight) \cap \left( {ACD} ight) = FG} \\   {\left( \alpha  ight)//DC} \end{array}} ight. \Rightarrow FG//DC\left( 4 ight)

    Từ (1), (2), (3), (4) => \left\{ {\begin{array}{*{20}{c}}  {EF//GH} \\   {EH//GF} \end{array}} ight.

    => EFGH là hình bình hành

  • Câu 21: Thông hiểu

    Chọn khẳng định đúng

    Cho hình chóp tứ giác S.ABCD, I =
AC \cap BD. Giả sử mặt phẳng (\alpha) bất kì cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'. Chọn khẳng định đúng trong các khẳng định sau.

    Hình vẽ minh hoạ

    Ta thấy: \left\{ \begin{matrix}
A'C' = (\alpha) \cap (SAC) \\
B'D' = (\alpha) \cap (SBD) \\
SI = (SBD) \cap (SAC) \\
\end{matrix} ight.

    => Các đường thẳng A'C',B'D',SI đồng quy.

  • Câu 22: Thông hiểu

    Chọn mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 23: Nhận biết

    Tìm mệnh đề sai

    Cho hình lăng trụ ABCD.A_{1}B_{1}C_{1}D_{1}. Tìm mệnh đề sai trong các mệnh đề dưới đây:

    Khẳng định sai là: A_{1}B_{1}//\left(
A_{1}D_{1}DA ight)

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), gọi K = BMAD

    Ta có: \left\{ \begin{gathered}
  K \in AD \hfill \\
  AD \in \left( {SAD} ight) \hfill \\ 
\end{gathered}  ight. \Rightarrow K \in \left( {SAD} ight)K \in BM nên K là giao điểm của BM với mặt phẳng (SAD).

  • Câu 25: Thông hiểu

    Đường thẳng nào song song với d

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAD) \cap (SBC) = d. Đường thẳng nào song song với d trong các đường thẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}AD//BC \\AD \subset (SAD) \\BC \subset (SBC) \\S \in (SAD) \cap (SBC) \\\end{matrix} ight.

    = > (SAD) \cap (SBC) =St//AD//BC

    => (SAD) \cap (SBC) = St hay St \equiv d

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) là đường thẳng St song song với đường thẳng AD.

  • Câu 26: Nhận biết

    Tìm câu sai

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 27: Vận dụng

    Bổ sung điều kiện cho hình chóp tứ giác

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Các điểm A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC) ta thu được ảnh lần lượt là M,N. Hình chóp S.ABCD cần thêm điều kiện gì để tứ giác BCMN là hình vuông?

    Hình vẽ minh họa

    Theo bài ra ta có: M,N lần lượt là ảnh của A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC).

    Ta có: \left\{ \begin{matrix}
SO//AM \\
SO//DN \\
OA = OC \\
\end{matrix} ight.

    => SO là đường trung bình của các tam giác CAM,BDN

    => \left\{ \begin{matrix}
AM//DN \\
AM = DN \\
\end{matrix} ight.

    => ADMN là hình bình hành

    \Rightarrow \left\{ \begin{matrix}
MN//BC \\
MN = BC \\
\end{matrix} ight. => BCMN là hình bình hành.

    Để BCMN là hình vuông thì \left\{ \begin{matrix}
BN = CM \\
BN\bot CM \\
\end{matrix} ight. suy ra hình chóp S.ABCD có mặt bên SBC vuông cân tại S.

  • Câu 28: Nhận biết

    Chọn khẳng định đúng

    Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. Khẳng định nào sau đây là đúng?

     Khẳng định đúng: "Ba giao tuyến này hoặc đồng quy hoặc đôi một song song."

  • Câu 29: Vận dụng

    Tính độ dài đoạn thẳng G1G2

    Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi G_{1};G_{2} lần lượt là trọng tâm của tam giác BCDACD. Khi đó độ dài đoạn thẳng G_{1}G_{2} bằng:

    Hình vẽ minh họa:

    Gọi I là trung điểm của CD.

    Trong tam giác IAB ta có:

    \frac{IG_{1}}{IB} = \frac{IG_{2}}{IA} =
\frac{1}{3} (theo tính chất trọng tâm tam giác)

    \Rightarrow \frac{G_{1}G_{2}}{AB} =
\frac{1}{3} \Rightarrow G_{1}G_{2} = \frac{a}{3}

  • Câu 30: Thông hiểu

    Giao tuyến của mặt phẳng (IJK) và (BCD)

    Cho tứ diện ABCD. Gọi I,J,K lần lượt là các điểm nằm trên các cạnh AB,BC,CD. Giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
J \in (IJK) \\
J \in BC \subset (BCD) \\
\end{matrix} ight.

    => J là điểm chung của hai mặt phẳng (IJK)(BCD).

    Ta lại có: \left\{ \begin{matrix}
K \in (IJK) \\
K \in CD \subset (BCD) \\
\end{matrix} ight.

    => K là điểm chung của hai mặt phẳng (IJK)(BCD).

    Vậy giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng JK.

  • Câu 31: Thông hiểu

    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 32: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 33: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 34: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

  • Câu 35: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD, lấy M,N lần lượt là trung điểm của BCCD. Giả sử d
= (MNA) \cap (ABD). Khẳng định nào đúng về đặc điểm của đường thẳng d?

    Hình vẽ minh họa

    Xét ba mặt phẳng (AMN),(ABD),(BCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,BD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,BD,MN đồng quy hoặc đôi một song song.

    BD//MN nên d//BD.

    Vậy đường thẳng d đi qua A và song song với BD.

  • Câu 36: Thông hiểu

    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 37: Nhận biết

    Chọn khẳng định sai

    Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Chọn khẳng định sai?

    Hình vẽ minh họa

    Ta có: AB \cap (SAC) = A nên đường thẳng AB cắt mặt phẳng (SAC) tại điểm A.

    Vậy khẳng định sai là “AB//(SAC)

  • Câu 38: Thông hiểu

    Xác định hình chiếu song song của điểm M

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?

    Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.

    Giả sử đường thẳng này cắt SD tại điểm I.

    Khi đó MI là đường trung bình của tam giác SCD

    => I là trung điểm của SD.

    Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.

  • Câu 39: Thông hiểu

    Tìm các giao tuyến của mặt phẳng và hình chóp

    Cho hình chóp tứ giác S.ABCD đáy là hình bình hành, M là trung điểm của AB. Giả sử (\gamma) là mặt phẳng đi qua M đồng thời song song với SBCD. Xác định các giao tuyến của mặt phẳng (\gamma) và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có:

    (\gamma)//SB nên (\gamma) cắt mặt phẳng (SBC) theo giao tuyến MN đi qua M và song song với SB, với N là trung điểm của SC.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (SCD) theo giao tuyến NP đi qua N và song song với CD, với P là trung điểm của SD.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (ABCD) theo giao tuyến MQ đi qua M và song song với CD, với Q là trung điểm của AD.

    Các giao tuyến của mặt phẳng (\gamma) và hình chóp là tứ giác MNPQ

    Lại có MQ//CD//NP nên MNPQ là hình thang.

  • Câu 40: Nhận biết

    Chọn khẳng định sai

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo