Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

    Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.

  • Câu 2: Vận dụng

    Xác định thiết diện

    Cho tứ diện ABCD. Lấy M là một điểm thuộc miền trong của tam giác ABC. Gọi (∝) là mặt phẳng qua M và song song với các đường thẳng AB và CD. Thiết diện tạo bởi (∝) và tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Ta có: (∝) //AB nên giao tuyến (∝) và (ABC) là đường thẳng song song với AB.

    Xét (ABC) ta có:

    Qua M kẻ EF // AB (1)

    Ta có: Giao tuyến của (ABC) và (∝) là EF

    Tương tự xét (BCD) qua E kẻ EH // CD (2) suy ra giao tuyến của (∝) và (BCD) là HE

    Xét mặt phẳng (ABD) kẻ HG // AB (3)

    => Giao tuyến của (∝) và (ABD) là HG

    Thiết diện tạo bởi (∝) và hình chóp ABCD là tứ giác EFGH

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( \alpha  ight) \cap \left( {ACD} ight) = FG} \\   {\left( \alpha  ight)//DC} \end{array}} ight. \Rightarrow FG//DC\left( 4 ight)

    Từ (1), (2), (3), (4) => \left\{ {\begin{array}{*{20}{c}}  {EF//GH} \\   {EH//GF} \end{array}} ight.

    => EFGH là hình bình hành

  • Câu 3: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Hình vẽ minh họa

    Ta có:SI = (SBC) \cap (SAD)

    Do \left\{ \begin{matrix}
SI = (SAD) \cap (SBC)\ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AD \subset (SAD)\ ;\ \ BC \subset (SBC) \\
AD \parallel BC \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
SI \parallel BC \parallel AD .

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 4: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình chóp S.ABCD có đáy là hình thang đáy lớn là CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Các mệnh đề sau đúng hay sai?

    a) MNSD cắt nhau.Sai||Đúng

    b) MN\  \parallel \
CD.Đúng||Sai

    c) MNSC cắt nhau.Sai||Đúng

    d) MNCD chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thang đáy lớn là CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Các mệnh đề sau đúng hay sai?

    a) MNSD cắt nhau.Sai||Đúng

    b) MN\  \parallel \
CD.Đúng||Sai

    c) MNSC cắt nhau.Sai||Đúng

    d) MNCD chéo nhau. Sai||Đúng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN = (MCD) \cap (SAB)\ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
CD \subset (MCD)\ \ ;\ \ AB \subset (SAB) \\
CD \parallel AB \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
MN//CD//AB.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

  • Câu 5: Nhận biết

    Chọn phương án thích hợp

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?

    Hình vẽ minh họa

    Quan sát hình vẽ ta thấy kết quả cần tìm là: AC và BD.

  • Câu 6: Thông hiểu

    Tìm hình chiếu của điểm M

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Lấy M là trung điểm của SC. Tìm hình chiếu của điểm M qua phép chiếu song song phương AB lên mặt phẳng chiếu (SAD).

    Giả sử N là ảnh của  M  theo phép chiếu song song phương  AB  lên mặt phẳng \left( {SAD} ight).

    Suy ra MN//AB =  > MN//CD

    Do  M  là trung điểm của SC=> N là trung điểm của  SD .

  • Câu 7: Thông hiểu

    Xét tính đúng sai của mỗi kết luận

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Đáp án là:

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: AD và (ABF) cắt nhau tại A.

    b) Đúng.

    Vì ABCD là hình bình hành nên AD \parallel BC, suy ra AD \parallel (BEC).

    Vì ABEF là hình bình hành nên AF \parallel BE, suy ra AF \parallel (BEC).

    ADAFcắt nhau nên (AFD) \parallel (BEC).

    c) Sai: Vì (ABD) và (EFC) có điểm C chung.

    d) Đúng:

    Vì ABCDABEF là hình bình hành nên AB,\ CD,\ FE đôi một song song

    Mặt khác (AFD) \parallel (BEC) (theo câu b)

    Do đó 6 điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác

  • Câu 8: Nhận biết

    Chọn khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trung điểm của các cạnh SA,SD,AB lần lượt là M,N,P. Chọn khẳng định đúng.

    Hình vẽ minh họa:

    Xét hai mặt phẳng (MON)(SBC).

    Ta có: OM//SCON//SB.

    BS ∩ SC = COM ∩ ON = O.

    Do đó (MON)//(SBC)

  • Câu 9: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Đáp án là:

    Cho hình chóp MQ//AD có đáy là hình thang với MN//AB. Gọi NP//BC là trọng tâm của tam giác PQ//CD; (\alpha) \equiv (MNPQ) là điểm thuộc đoạn SAB sao cho MN. Tìm x để AB.

    Đáp án: 2

    Hình vẽ minh họa

    Gọi I là trung điểm cạnh AD

    Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q. 

    Dễ thấy SQ = (IGE) \cap
(SBC).

    Do đó: GE//(SBC) \Leftrightarrow GE//SQ \Leftrightarrow \frac{IE}{IQ} =
\frac{IG}{IS} \Rightarrow
\frac{IE}{IQ} = \frac{1}{3}.

    Mặt khác, tam giác EIA đồng dạng với tam giác EQC nên \frac{EI}{EQ} = \frac{EA}{EC} = \frac{EA}{xEA} =\frac{1}{x}

    Suy ra EQ = x.EI.

    \Rightarrow \frac{IE}{IQ} = \frac{IE}{IE
+ EQ} = \frac{IE}{IE + x.IE} = \frac{1}{1 + x}.

    Từ và \Rightarrow \frac{1}{1 + x} =
\frac{1}{3} \Leftrightarrow x =
2.

    Vậy GE//(SBC) \Leftrightarrow x = 2.

  • Câu 10: Nhận biết

    Tìm mệnh đề sai

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 11: Thông hiểu

    Tìm các cặp cạnh cắt nhau

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 12: Thông hiểu

    Tìm phát biểu đúng, phát biểu sai

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

  • Câu 13: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Hình vẽ minh họa

    -Ta có S \in (SIK) \cap
(SAC).

    Trong mặt phẳng (ABCD), gọi E = IK \cap AC

    \Rightarrow \left\{ \begin{matrix}
E \in IK \subset (SIK) \\
E \in AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow E \in (SIK) \cap (SAC)

    Suy ra SE = (SIK) \cap
(SAC).

    Ta có:

    \left\{ \begin{matrix}
S \in (SIK) \cap (SBD) \\
BD \subset (SBD),IK \subset (SIK) \\
BD//IK \\
\end{matrix} ight.

    \Rightarrow (SIK) \cap (SBD) = Sx,(\
Sx//BD//IK)

    -Trong mp (SBD), gọi F = Sx \cap DM

    \Rightarrow \left\{ \begin{matrix}
S \in DM \\
S \in Sx \subset (SIK) \\
\end{matrix} \Rightarrow F = DM \cap (SIK) ight..

    Ta có SF//BD \Rightarrow \frac{MF}{MD} =
\frac{MS}{MB} = 1.

  • Câu 14: Thông hiểu

    Tính tỉ số giữa hai đường thẳng

    Cho tứ diện ABCD. Gọi K,L lần lượt là trung điểm của ABBC,N là điểm thuộc đoạn CD sao cho CN
= 2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số \frac{PA}{PD}.

    Hình vẽ minh họa

    Giả sử LN \cap BD = I. Nối K với I cắt AD tại P Suy ra (KLN) \cap AD = P
    Ta có: KL//AC \Rightarrow PN//AC. Suy ra \frac{PA}{PD} = \frac{NC}{ND} =
2.

  • Câu 15: Nhận biết

    Tìm mệnh đề sai

    Trong các mệnh đề sau mệnh đề nào sai:

    Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".

  • Câu 16: Vận dụng

    Tìm mặt phẳng cố định song song với MN

    Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy các điểm M \in AD',N \in DB sao cho AM = DN = x;\left( 0 < x < a\sqrt{2}
ight). Khi giá trị x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

    Hình vẽ minh họa

    Áp dụng định lí Ta – lét đảo cho D,N,B
\in DBA,M,D' \in
AD'. Từ tỉ lệ

    \frac{AM}{AD'} = \frac{DN}{DB}\left(
= \frac{x}{a\sqrt{2}} ight)

    Ta suy ra AD,MN,BD' cùng song song với một mặt phẳng (\alpha) nào đó.

    Ta chọn mặt phẳng (\beta) chứa BD' và song song với AD.

    Mặt phẳng (\beta) chính là mặt phẳng (BCD'A') và là mặt phẳng cố định.

    \Rightarrow
MN//(\alpha)//(BCD'A')

    Hay MN//(A'BC)

  • Câu 17: Vận dụng

    Xác định phát biểu đúng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 18: Nhận biết

    Chọn đáp án đúng

    Cho hai đường thẳng mn chéo nhau. Có bao nhiêu mặt phẳng chứa m và song song với n?

    Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.

  • Câu 19: Vận dụng

    Tính độ dài GG'

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 20: Thông hiểu

    Tìm khẳng định đúng

    Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:

    Hình vẽ minh họa

    Tìm khẳng định đúng

    Xét ΔBFD có OO’ là đường trung bình => OO’ // DF

    Mà DF ⊂ (ADF)

    => OO' // (ADF)

  • Câu 21: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 22: Thông hiểu

    Tìm giao tuyến các mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD tâm O. Gọi M,N lần lượt là trung điểm của SB,AB. Xác định các giao tuyến của (MNO) với các mặt của S.ABCD. Hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh hoạ

    Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau

    Qua M kẻ PQ // NO với Q ∈ SC.

    Kéo dài NO cắt CD tại P.

    => Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.

    Tứ giác MNPQ có MN // NP

    => Tứ giác MNPQ là hình thang.

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), gọi K = BMAD

    Ta có: \left\{ \begin{gathered}
  K \in AD \hfill \\
  AD \in \left( {SAD} ight) \hfill \\ 
\end{gathered}  ight. \Rightarrow K \in \left( {SAD} ight)K \in BM nên K là giao điểm của BM với mặt phẳng (SAD).

  • Câu 24: Nhận biết

    Chọn đáp án thích hợp

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O. Gọi I,J lần lượt là trung điểm SA, SC. Đường thẳng IJ song song với đường thẳng nào trong các đường thẳng sau?

    Hình vẽ minh họa

    Do IJ là đường trung bình của tam giác SAC \Rightarrow
IJ//AC.

  • Câu 25: Thông hiểu

    Xác định giao tuyến

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

     Xác định giao tuyến

    Xét (SAD) và (SBC) có:

    S là điểm chung

    AD // BC

    => Giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song với AD

  • Câu 26: Thông hiểu

    Tìm số cạnh của một hình chóp

    Tìm số cạnh của một hình chóp có đáy là một bát giác:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 27: Nhận biết

    Chọn các đáp án đúng

    Phép chiếu song song biến ba đường thẳng song song thành:

    Theo tính chất của phép chiếu song song ta có:

    Phép chiếu song song biến ba đường thẳng song song thành ba đường thẳng đôi một song song.

    Vậy các đáp án đúng là:

    Ba đường thẳng đôi một song song với nhau.

    Một đường thẳng.

    Thành hai đường thẳng song song.

  • Câu 28: Nhận biết

    Tính số mặt phẳng được tạo thành

    Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

    Hình vẽ minh họa

    Với 4 điểm không đồng phẳng A,B,C,D có thể xác định được 4 mặt phẳng phân biệt từ các điểm đó là (ABC),(BCD),(ACD),(ABD).

  • Câu 29: Vận dụng

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 30: Nhận biết

    Tìm câu sai

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 31: Thông hiểu

    Chọn kết luận đúng

    Cho tứ diện ABCDI,J lần lượt là trọng tâm tam giác ABCABD. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm của BD và BC

    Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)

    Do I, J là trọng tâm tam giác ABC và ABD suy ra \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3}
\Rightarrow JI//MN(**)

    Từ (*) và (**) suy ra TH

     

    1

  • Câu 32: Nhận biết

    Tìm phát biểu sai

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

  • Câu 33: Thông hiểu

    Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC)

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).

    Hình vẽ minh họa

    Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.

  • Câu 34: Thông hiểu

    Tìm khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 35: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 36: Thông hiểu

    Tìm hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều

    Cho tam giác ABC là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:

    Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.

    Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác ABC.

  • Câu 37: Thông hiểu

    Chọn đáp án đúng

    Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (A'BD) song song với mặt phẳng

    Hình vẽ minh họa

    BCD'A' là hình bình hành, ta có BA'\ //\ CD' (1)

    BDD'B' là hình bình hành, ta cóBD\ //\ B'D' (2)

    Mặt khác: BA' \cap BD = B,\ \ \
CD' \cap B'D' = D' (3)

    Từ (1); (2); (3) \Rightarrow(A'BD)//(CB'D'), suy ra phương án cần tìm là: (CB'D').

  • Câu 38: Thông hiểu

    Xác định tính đúng sai của các phát biểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 39: Nhận biết

    Tìm vị trí tương đối hai đường thẳng

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 40: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo