Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Các phép biến đổi lượng giác

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Các phép biến đổi lượng giác sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị biểu thức A

    Tính giá trị biểu thức A = \cos^{6}15^{0} - \sin^{6}15^{0}

    Hướng dẫn:

    Ta có:

    \cos^{6}\alpha -\sin^{6}\alpha

    = \left( \cos^{2}\alpha ight)^{3} -\left( \sin^{2}\alpha ight)^{3}

    = \left( \cos^{2}\alpha - \sin^{2}\alphaight)\left( \cos^{4}\alpha + \cos^{2}\alpha.\sin^{2}\alpha +\sin^{4}\alpha ight)

    = \cos2\alpha.\left\lbrack \left(\cos^{2}\alpha + \sin^{2}\alpha ight)^{2} - \cos^{2}\alpha.\sin^{2}\alphaightbrack

    = \cos2\alpha.\left( 1^{2} -\dfrac{1}{4}\sin^{2}2\alpha ight)

    Khi đó:

    A = \cos^{6}15^{0} -\sin^{6}15^{0}

    A = \cos30^{0}.\left( 1 -\dfrac{1}{4}\sin^{2}30^{0} ight)

    A = \frac{\sqrt{3}}{2}.\left( 1 -
\frac{1}{4}.\frac{1}{4} ight) = \frac{15\sqrt{3}}{32}

  • Câu 2: Nhận biết
    Tính giá trị của biểu thức B

    Tính giá trị của biểu thức B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5} +\sin\frac{\pi}{30}.\sin\frac{\pi}{5} là:

    Hướng dẫn:

    Ta có:

    B = \cos\frac{\pi}{30}.\cos\frac{\pi}{5}+ \sin\frac{\pi}{30}.\sin\frac{\pi}{5}

    B = \cos\left( \frac{\pi}{30} -
\frac{\pi}{5} ight) = \cos\left( - \frac{\pi}{6} ight) =
\frac{\sqrt{3}}{2}

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức C

    Giá trị của biểu thức C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24} là:

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\sin\dfrac{7\pi}{24} = \cos\dfrac{5\pi}{24} \\\sin\dfrac{11\pi}{24} = \cos\dfrac{\pi}{24} \\\end{matrix} ight.

    Khi đó:

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24}

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24}.\cos\frac{\pi}{24}

    C = \dfrac{1}{4}.\left(2\sin\frac{\pi}{24}.\cos\frac{\pi}{24} ight).\left(2.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24} ight)

    C =\frac{1}{4}.\sin\frac{\pi}{12}.\sin\frac{5\pi}{12}

    C = \frac{1}{4}.\frac{1}{2}.\left(\cos\frac{6\pi}{12} + \cos\frac{\pi}{3} ight)

    C = \frac{1}{4}.\frac{1}{2}.\left( 0 +
\frac{1}{2} ight) = \frac{1}{16}

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức D

    Tính D =\sin\dfrac{\pi}{48}.\cos\frac{\pi}{48}.\cos\dfrac{\pi}{12}.\sin\frac{\pi}{6}

    Hướng dẫn:

    Ta có:

    D =\sin\frac{\pi}{48}.\cos\frac{\pi}{48}.\cos\frac{\pi}{12}.\sin\frac{\pi}{6}

    D =\frac{1}{2}\sin\frac{\pi}{24}.\cos\frac{\pi}{24}.\cos\frac{\pi}{12}.\sin\frac{\pi}{6}

    D =\frac{1}{4}\sin\frac{\pi}{12}.\cos\frac{\pi}{12}.\cos\frac{\pi}{6}

    D =\frac{1}{8}\sin\frac{\pi}{6}.\cos\frac{\pi}{6}

    D = \frac{1}{16}\sin\frac{\pi}{3} =
\frac{\sqrt{3}}{32}

  • Câu 5: Nhận biết
    Chọn khẳng định đúng

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \sin(2018a) =2\sin(1009a).\cos(1009a)

  • Câu 6: Nhận biết
    Tìm khẳng định sai

    Khẳng định nào sai trong các khẳng định sau?

    Hướng dẫn:

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 7: Thông hiểu
    Chọn khẳng định đúng

    Khẳng định nào đúng trong các khẳng định sau?

    Hướng dẫn:

    \sin a + \cos a = \sqrt{2}\sin\left( a +
\frac{\pi}{4} ight)

  • Câu 8: Nhận biết
    Tìm công thức đúng

    Công thức nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 9: Thông hiểu
    Rút gọn biểu thức E

    Rút gọn biểu thức E = \cos(a + b)\cos(a - b) - \sin(a + b)\sin(a -b)

    Hướng dẫn:

    Ta có:

    E = \cos(a + b)\cos(a - b) - \sin(a +
b)\sin(a - b)

    E = \cos(a + b + a - b) = \cos2a = 1 -2\sin^{2}a

  • Câu 10: Thông hiểu
    Tìm x

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Hướng dẫn:

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 11: Vận dụng
    Tính tổng số đo ba góc nhọn

    Cho ba góc nhọn thỏa mãn \tan\widehat{A} = \frac{1}{2};\tan\widehat{B} =\frac{1}{5};\tan\widehat{C} = \frac{1}{8}. Tính tổng số đo ba góc nhọn.

    Hướng dẫn:

    Ta có:

    \tan\left( \widehat{A} + \widehat{B}ight) = \dfrac{\tan\widehat{A} + \tan\widehat{B}}{1 -\tan\widehat{A}.tan\widehat{B}} = \dfrac{\dfrac{1}{2} + \dfrac{1}{5}}{1 -\dfrac{1}{2}.\dfrac{1}{5}} = \dfrac{7}{9}

    \Rightarrow \tan\left( \widehat{A} +\widehat{B} + \widehat{C} ight) = \frac{\tan\left( \widehat{A} +\widehat{B} ight) + \tan\widehat{C}}{1 - \tan\left( \widehat{A} +\widehat{B} ight).\tan\widehat{C}} = \dfrac{\dfrac{7}{9} + \dfrac{1}{8}}{1- \dfrac{7}{9}.\dfrac{1}{8}} = 1

    \Rightarrow \widehat{A} + \widehat{B} +
\widehat{C} = 45^{0}

  • Câu 12: Vận dụng
    Tính giá trị của P

    Cho \widehat{A};\widehat{B};\widehat{C} là các góc của tam giác ABC. Khi đó:

    P =\tan\frac{\widehat{A}}{2}\tan\frac{\widehat{B}}{2} +\tan\frac{\widehat{B}}{2}.\tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{C}}{2}.\tan\frac{\widehat{A}}{2}

    Hướng dẫn:

    Ta có: \widehat{A} + \widehat{B} +\widehat{C} = \pi

    \Rightarrow \frac{\widehat{B} +\widehat{C}}{2} = \frac{\pi}{2} - \frac{\widehat{A}}{2}

    \Rightarrow \tan\left( \frac{\widehat{B}+ \widehat{C}}{2} ight) = \tan\left( \frac{\pi}{2} -\frac{\widehat{A}}{2} ight)

    \Rightarrow\dfrac{\tan\dfrac{\widehat{C}}{2} + \tan\dfrac{\widehat{B}}{2}}{1 -\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2}} =\cot\frac{\widehat{A}}{2} =\dfrac{1}{\tan\dfrac{\widehat{A}}{2}}

    \Rightarrow\tan\frac{\widehat{A}}{2}.\left( \tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{B}}{2} ight) +\tan\frac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2} = 1

    \Rightarrow\tan\dfrac{\widehat{A}}{2}.\tan\dfrac{\widehat{B}}{2} +\tan\dfrac{\widehat{B}}{2}.\tan\dfrac{\widehat{C}}{2} +\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{A}}{2} = 1

  • Câu 13: Vận dụng cao
    Tính giá trị biểu thức

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Hướng dẫn:

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 14: Vận dụng cao
    Tính giá trị biểu thức P

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Hướng dẫn:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 15: Thông hiểu
    Rút gọn biểu thức S

    Rút gọn biểu thức S = \cos^{2}\left( \frac{\pi}{4} + \alpha ight) -\cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    Hướng dẫn:

    Vì hai góc \left( \frac{\pi}{4} + \alpha
ight)\left( \frac{\pi}{4} -
\alpha ight) phụ nhau nên

    \cos\left( \dfrac{\pi}{4} - \alphaight) = \sin\left( \dfrac{\pi}{4} + \alpha ight)

    S = \cos^{2}\left( \frac{\pi}{4} + \alphaight) - \cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    \Rightarrow S = \cos^{2}\left(\frac{\pi}{4} + \alpha ight) - \sin^{2}\left( \frac{\pi}{4} + \alphaight)

    \Rightarrow S = \cos\left( \frac{\pi}{4}+ 2\alpha ight) = - \sin2\alpha

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (13%):
    2/3
  • Vận dụng cao (13%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Cánh Diều

Xem thêm