Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 5: Một số yếu tố thống kê và xác suất nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tính xác suất của biến cố

    Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?

    Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là \frac{1}{6}

    Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,2}{5} = \frac{4}{25}

    Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là \frac{1 - 0,25}{5} = \frac{3}{20}

    Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:

    Biến cố

    Xúc xắc 1; 2; 3

    Xác suất

    B

    2 chấm, 2 chấm, 1 chấm

    P(B) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    C

    2 chấm, 1 chấm, 2 chấm

    P(C) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    D

    1 chấm, 2 chấm, hai chấm

    P(D) =
\frac{1}{6}.\frac{4}{25}.\frac{3}{20}

    Do A = B \cup C \cup D và các biến cố B, C, D đôi một xung khắc nên ta có:

    P(A) = P(B) + P(C) + P(D) =
\frac{3}{250}

  • Câu 2: Nhận biết

    Số nhóm của mẫu số liệu

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [145; 150)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    6

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 5 nhóm.

  • Câu 3: Vận dụng

    Tìm số các số tự nhiên 7 chữ số thỏa mãn điều kiện

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 4: Thông hiểu

    Tính giá trị đại diện một nhóm

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 5: Nhận biết

    Xác suất để mặt chấm chẵn xuất hiện

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 6: Thông hiểu

    Tính số các số được tạo thành

    Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?

     Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số 

    Trường hợp số có 1 chữ số ta được 4 số

    Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số

    Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số

    Trường hợp số có 4 chữ số ta được: 4! = 24 số

    => Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số

  • Câu 7: Vận dụng

    Tính số cạnh của đa giác

    Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

    Gọi số cạnh của đa giác đều là n (cạnh)

    => Đa giác đó có n đỉnh tương ứng

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{n}^2 đoạn thẳng

    Mà đa giác đều có 44 đường chéo nên ta có phương trình

    44 + n = C_n^2 \Rightarrow n = 11

    Vậy đa giác đều có 11 cạnh

  • Câu 8: Thông hiểu

    Tính xác suất của biến cố

    Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?

    Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}

    Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là C_{9}^{2}

    Số phần tử của không gian mẫu là n(\Omega) = C_{9}^{2} = 36

    Gọi A là biến cố tích các số trên thẻ rút được là số chẵn

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2} + C_{4}^{1}.C_{5}^{1} = 26

    \Rightarrow P(A) = \frac{26}{36} =
\frac{13}{18}

  • Câu 9: Vận dụng cao

    Chọn đáp án đúng

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 10: Vận dụng

    Xác định tần suất nhóm

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 11: Thông hiểu

    Tính trung vị của mẫu dữ liệu ghép nhóm

    Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

    Tính trung vị của mẫu dữ liệu ghép nhóm.

    Ta có:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

     

    Số cây

    10

    15

    17

    14

    12

    2

    N = 70

    Tần số tích lũy

    10

    25

    42

    56

    68

    70

     

    Ta có: \frac{N}{2} = \frac{70}{2} =35

    => Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)

    \Rightarrow l = 60;\frac{N}{2} =\frac{70}{2} = 35;m = 25;f = 17,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    = 60 + \dfrac{(35 - 25)}{17}.10 \approx 66

  • Câu 12: Vận dụng

    Tìm cỡ mẫu

    Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:

    Khoảng số từ

    Số câu

    [1; 5)

    2

    [5; 9)

    5

    [9; 13)

    x

    [13; 17)

    23

    [17; 21)

    21

    [21; 25)

    13

    [25; 29)

    4

    [29; 33)

    1

    Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:

    Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)

    Khoảng số từ

    Số câu

    [1; 5)

    2

     

    [5; 9)

    5

     

    [9; 13)

    x

    f_{0}

    [13; 17)

    23

    f_{1}

    [17; 21)

    21

    f_{2}

    [21; 25)

    13

     

    [25; 29)

    4

     

    [29; 33)

    1

     

    Do đó:

    \Rightarrow \left\{ \begin{matrix}l = 13;f_{0} = x;f_{1} = 23;f_{2} = 21 \\c = 17 - 13 = 4,M_{0} = 16 \\\end{matrix} ight.

    Khi đó ta có:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Leftrightarrow 16 = 13 + \frac{23 -x}{2.23 - x - 21}.4

    \Leftrightarrow x = 17

    Vậy cỡ mẫu N = 86.

  • Câu 13: Vận dụng

    Chọn đáp án đúng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 14: Vận dụng

    Tính tần số nhóm

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 15: Thông hiểu

    Số cách chọn học sinh đi trực

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 16: Thông hiểu

    Tính số tuổi trung bình

    Tính số tuổi trung bình của những người trong khu vực thể hiện dưới bảng số liệu sau đây:

    Nhóm tuổi

    Số lượng người

    [0; 10)

    6

    [10; 20)

    12

    [20; 30)

    10

    [30; 40)

    32

    [40; 50)

    22

    [50; 60)

    18

    [60; 70)

    15

    [70; 80)

    5

    [80; 90)

    4

    [90; 100)

    3

    Trong mỗi nhóm tuổi, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

    Nhóm tuổi

    Số lượng người

    5

    6

    15

    12

    25

    10

    35

    32

    45

    22

    55

    18

    65

    15

    75

    5

    85

    4

    95

    3

     

    N = 127

    Tuổi trung bình là:

    \overline{x} = \frac{5.6 + 15.12 + 25.10+ 35.32 + 45.22 + 55.18 + 65.15 + 75.5 + 85.4 + 95.3}{127}

    \overline{x} = \frac{5535}{127} \approx44

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    7

    12

    Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?

    Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:

    4 + 7 + 12 = 23 (học sinh) chiếm \frac{23.100\%}{47} \approx49\%

  • Câu 18: Thông hiểu

    Tính xác suất của biến cố

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?

    Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:

    P =
C_{4}^{3}.(0,05)^{3}.0,95

  • Câu 19: Nhận biết

    Chọn khẳng định đúng

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 20: Nhận biết

    Tính tứ phân vị thứ nhất

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?

    Ta có: N = 100

    =>N/4=100/4=25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

  • Câu 21: Thông hiểu

    Tính giá trị của x

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 174)

    Tần số

    8

    x

    12

    6

    Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của x?

    Nhóm số liệu có độ dài 166 là: [164; 168)

    Theo bài ra ta có:

    \frac{x.100\%}{8 + 12 + x + 6} = 60\%\Rightarrow x = 39

  • Câu 22: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 23: Nhận biết

    Chọn phương án đúng

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

    Đáp án là:

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

  • Câu 24: Vận dụng

    Phân tích sự đúng sai của các kết luận

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Đáp án là:

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Số phần tử không gian mẫu là C_{16}^{4} =
1820

    a) Gọi A là biến cố “Lấy được 4 viên bi màu trắng”

    Số phần tử của A là C_{4}^{4} =
1

    Vậy xác suất để lấy được cả 4 viên bi màu trắng là: \frac{1}{1820}

    b) Gọi D là biến cố lấy được số bi trắng gấp hai lần số bi đen và đỏ

    Ta có các kết quả thuận lợi cho biến cố D là lấy 2 bi trắng 1 bi đen và 1 bi đỏ

    Ta có số phần tử của biến cố D là: C_{4}^{2}.C_{5}^{1}.C_{7}^{1} = 210

    Vậy xác suất cần tìm là P(D) =
\frac{3}{26}.

    c) Gọi E là biến cố lấy được các viên bi có đủ 3 màu

    Ta có các trường hợp thuận lợi cho biến cố E:

    Th1: Chọn 1 bi đen, 1 bi đỏ và 2 bi trắng nên ta có: C_{7}^{1}.C_{5}^{1}.C_{4}^{2} cách

    Th2: Chọn 1 bi đen, 2 bi đỏ và 1 bi trắng nên ta có: C_{7}^{1}.C_{5}^{2}.C_{4}^{1} cách

    Th3: Chọn 2 bi đen, 1 bi đỏ và 1 bi trắng nên ta có: C_{7}^{2}.C_{5}^{1}.C_{4}^{1} cách

    Suy ra số phần tử của biến cố E là C_{7}^{1}.C_{5}^{1}.C_{4}^{2} +
C_{7}^{1}.C_{5}^{1}.C_{4}^{2} + C_{7}^{2}.C_{5}^{1}.C_{4}^{1} =
910

    Vậy P(E) = \frac{1}{2}

    d) Ta có: E là biến cố lấy được các viên bi có đủ 3 màu khi đó \overline{E} là biến cố lấy được các viên bi không đủ 3 màu

    \Rightarrow P\left( \overline{E} ight)
= 1 - P(E) = \frac{1}{2}

  • Câu 25: Nhận biết

    Chọn đáp án đúng

    Không gian mẫu của một phép thử được mô tả như sau \Omega = \left\{ 1;2;3;4;5;6;7
ight\}

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3;7 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 26: Nhận biết

    Chọn đáp án đúng

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có nhiều học sinh nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Vậy lớp 11C có nhiều học sinh nhất.

  • Câu 27: Nhận biết

    Tính số các số được tạo thành

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 28: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 29: Nhận biết

    Xác định nhóm chứa tứ phân vị thứ nhất

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

  • Câu 30: Nhận biết

    Chọn đáp án đúng

    Dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

    Chiều cao (m)

    [150; 153)

    [153; 156)

    [156; 159)

    [159; 162)

    [162; 165)

    [165; 168)

    Số học sinh

    10

    15

    28

    22

    14

    11

    Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là

    Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là \lbrack  156; 159 ).

    Giá trị đại diện cho nhóm là \frac{156 +
159}{2} = 157,5.

  • Câu 31: Nhận biết

    Xác định số cách chọn một trong các quả cầu

    Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

    Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

    Nếu chọn một quả trắng có 6 cách.

    Nếu chọn một quả đen có 3 cách.

    Theo quy tắc cộng, ta có 6 + 3 = 9 cách chọn.

  • Câu 32: Nhận biết

    Xác định nhóm chứa tứ phân vị thứ nhất

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)

  • Câu 33: Thông hiểu

    Tính số cách chọn học sinh

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455

    => Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: 9880 - 455 = 9425 cách

  • Câu 34: Thông hiểu

    Chọn kết luận đúng

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 35: Vận dụng

    Tìm tích các tần số còn thiếu

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 36: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Đáp án là:

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Gọi A là biến cố có ít nhất một động cơ chạy tốt

    B là biến cố chỉ có động cơ 1 chạy tốt.

    P(B) = 0,8(1 - 0,7) = 0,24

    Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.

    P(C) = 0,7(1 - 0,8) = 0,14

    Gọi D là biến cố cả hai động cơ đều chạy tốt

    P(D) = 0,8.0,7 = 0,56

    Vậy P(A) = P(B) + P(C) + P(D) =
0,94

  • Câu 37: Nhận biết

    Chọn đáp án đúng

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 38: Thông hiểu

    Chọn đáp án chính xác

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 39: Thông hiểu

    Chọn đáp án đúng

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình môn của lớp 11A thuộc nhóm nào?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50+ 10.70 + 6.90}{42} \approx 51,43

    \Rightarrow \overline{x} \in \lbrack40;60)

  • Câu 40: Thông hiểu

    Điền đáp án vào ô trống

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Sắp xếp nhóm dữ liệu theo chiều tăng như sau:

    Mức lương (USD)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Mức lương trung bình (USD)

    25

    35

    45

    55

    65

    Nhân viên

    3

    5

    20

    10

    5

    Tần số tích lũy

    3

    8

    28

    38

    43

    Mức lương trung bình là:

    \overline{x} = \frac{25.3 + 35.5 + 45.20+ 55.10 + 65.5}{43} \approx 47,1

    Ta có: \frac{N}{2} = \frac{43}{2} =21,5

    Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.

    \Rightarrow l = 40;\frac{N}{2} = 21,5;m =8;f = 20,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 40 + \frac{21,5 - 8}{20}.10 =46,75

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo