Mệnh đề đúng?
Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?
Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9
Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*
Vậy (un) là dãy số tăng.
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 2: Dãy số. Cấp số cộng và cấp số nhân nha!
Mệnh đề đúng?
Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?
Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9
Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*
Vậy (un) là dãy số tăng.
Điều kiện để dãy số lập thành cấp số nhân
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Tính tổng S
Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức ![]()
Ta có:
Ta lại có
Bước làm đúng?
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước
Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1
Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1
Hãy chọn câu trả lời đúng tương ứng với lí luận trên.
Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.
Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k ≥ p) ".
Tìm công sai d
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Xác định cấp số cộng
Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?
Xét dãy số
Ta có:
Vậy dãy số là một cấp số cộng với
Tính số tiền mỗi tháng phải gửi vào ngân hàng
Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?
Gọi a là số tiền gửi mỗi tháng.
Cuối tháng thứ 1 số tiền là
Cuối tháng thứ 2 số tiền là
Cuối tháng thứ n số tiền là
Áp dụng công thức trên, ta tính được
Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).
Tìm số hạng thứ 10 của dãy số
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Tìm dãy số lập thành cấp số cộng
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Số 100 là số hạng thứ mấy của cấp số cộng
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Mỗi tháng bác Hoa phải trả bao nhiêu tiền
Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?
Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)
Ta có:
(đồng)
Vậy số tiền bác Hoa phải trả mỗi tháng là (đồng).
Tìm công sai của CSC
Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Chọn đáp án đúng
Cho dãy số
xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Tìm kết luận đúng
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Chọn khẳng định sai
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Chọn kết quả đúng
Cho dãy số
biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Tìm số hạng tổng quát
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Xác định dãy số là cấp số nhân
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Tìm số hạng tổng quát của dãy số
Xác định số hạng tổng quát của dãy số dãy số
với
.
Từ công thức
Xét đáp án với
(loại)
Xét đáp án ta thấy thỏa mãn
Xét đáp án với
(loại)
Xét đáp án với
(loại)
Tìm số hạng thứ n của cấp số cộng
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: