Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 7: Đạo hàm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính vận tốc của chất điểm

    Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình S(t) =
\frac{t^{4}}{12} - t^{3} + 6t^{2} + 10t,(t > 0) với t tính bằng giây và S(t) tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?

    Kết quả: 28m/s

    Đáp án là:

    Một chất điểm chuyển động biến đổi đều trong 20 giây đầu tiên có phương trình S(t) =
\frac{t^{4}}{12} - t^{3} + 6t^{2} + 10t,(t > 0) với t tính bằng giây và S(t) tính bằng mét. Hỏi vận tốc của chất điểm tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu?

    Kết quả: 28m/s

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = \frac{1}{3}t^{3} - 3t^{2}
+ 12t + 10

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t =
3(s). Khi đó vận tốc là

    v(3) = 28(m/s)

  • Câu 2: Thông hiểu

    Chọn đáp án đúng

    Tính đạo hàm cấp 5 của hàm số y = \frac{x^{2} + x + 1}{x + 1} là:

    Ta có:

    y = \frac{x^{2} + x + 1}{x + 1} = x +
\frac{1}{x + 1}

    \Rightarrow y' = 1 - \frac{1}{(x +
1)^{2}}

    \Rightarrow y'' = \frac{2}{(x +
1)^{3}} \Rightarrow y^{(3)} = \frac{- 6}{(x + 1)^{4}}

    \Rightarrow y^{(4)} = \frac{24}{(x +
1)^{5}} \Rightarrow y^{(5)} = - \frac{120}{(x + 1)^{6}}

  • Câu 3: Nhận biết

    Tính vi phân của hàm số

    Tính vi phân của hàm số y = {x^3} + 9{x^2} + 12x - 5

     Ta có:

    \begin{matrix}  y' = {x^2} - 18x + 12 \hfill \\   \Rightarrow dy = \left( {3{x^2} - 18x + 12} ight)dx \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tìm đạo hàm cấp hai của hàm số

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 5: Vận dụng

    Tính đạo hàm của hàm số tại x = 1

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ \ khi\ x eq 1 \\- \dfrac{5}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x = 1.

    Ta có:

    \lim_{x ightarrow 1}\dfrac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1}\dfrac{\dfrac{\sqrt{3x + 1} - 2x}{x -1} + \dfrac{5}{4}}{x - 1}

    = \lim_{x ightarrow 1}\frac{4\sqrt{3x+ 1} - 3x - 5}{4(x - 1)^{2}}

    = \lim_{x ightarrow 1}\frac{\left(4\sqrt{3x + 1} - 3x - 5 ight)\left( 4\sqrt{3x + 1} + 3x + 5ight)}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5ight)}

    = \lim_{x ightarrow 1}\frac{16(3x + 1)- \left( 9x^{2} + 30x + 25 ight)}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} +3x + 5 ight)}

    = \lim_{x ightarrow 1}\frac{- 9x^{2} +18x - 9}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5ight)}

    = \lim_{x ightarrow 1}\frac{- 9(x -1)^{2}}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5 ight)}

    = \lim_{x ightarrow 1}\frac{-9}{4\left( 4\sqrt{3x + 1} + 3x + 5 ight)} = \frac{-9}{64}

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 7: Nhận biết

    Định nghĩa đạo hàm của hàm số tại một điểm

    Cho f là hàm số liên tục tại x_{0}. Đạo hàm của f tại x_{0} là: 

    Đạo hàm của f tại x_{0} là \underset{h \to 0}{lim}\frac{f(x_{0}+h)-f(x_{0})}{h} (nếu tồn tại giới hạn)

  • Câu 8: Thông hiểu

    Giải bất phương trình

    Cho hàm số y =
\frac{x^{4}}{4} - x^{3} + 1. Tập nghiệm của bất phương trình y''' \leq 6 là:

    Ta có:

    y = \frac{x^{4}}{4} - x^{3} +
1

    \Rightarrow y' = x^{3} - 3x^{2}
\Rightarrow y'' = 3x^{2} - 6x

    \Rightarrow y^{(3)} = 6x -
6

    y^{(3)} \leq 6 \Leftrightarrow 6x - 6
\leq 6 \Leftrightarrow x \leq 2

    Vậy S = ( - \infty;2brack

  • Câu 9: Vận dụng

    Chọn đáp án đúng

    Cho hàm số f(x)
= \left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} = 0. Chọn khẳng định đúng?

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

  • Câu 10: Thông hiểu

    Tìm đạo hàm của hàm số y = f(x)

    Tính đạo hàm của hàm số y = \frac{x^{2} + 2x + 3}{x + 2}?

    Ta có:

    y = \frac{x^{2} + 2x + 3}{x + 2} = x +\frac{3}{x + 2}

    \Rightarrow y' = 1 + \frac{3}{(x +
2)^{2}}

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Tìm đạo hàm của hàm số y = \left( 2x^{2} + x - 1 ight)(2 -
3x)?

    Ta có: y = \left( 2x^{2} + x - 1
ight)(2 - 3x)

    \Rightarrow y' = \left( 2x^{2} + x -
1 ight)'(2 - 3x) + \left( 2x^{2} + x - 1 ight)(2 -
3x)'

    = (4x + 1)(2 - 3x) + \left( 2x^{2} + x -
1 ight).( - 3)

    = - 12x^{2} + 8x - 3x + 2 - 6x^{2} - 3x
+ 3

    = - 18x^{2} + 2x + 5

  • Câu 12: Nhận biết

    Tính đạo hàm của hàm số

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 13: Nhận biết

    Khoảng cách viên đạn với mặt đất tại thời điểm t

    Một viên đạn được bắn lên cao theo phương trình s(t) = 196 - 4,9t^{2} trong đó t > 0, t tính bằng giây kể từ thời điểm viên đạn được bắn lên cao và s(t) là khoảng cách của viên đạn so với mặt đất được tính bằng mét. Tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất bao nhiêu mét?

    Vận tốc của viên đạn v(t) = s_{0}(t) =196 - 9,8t

    Ta có:

    \begin{matrix}v(t) = 0 \hfill \\\Leftrightarrow 196 - 9,8t = 0 \hfill \\\Leftrightarrow t = 20 \hfill\\\end{matrix}

    Khi đó viên đạn cách mặt đất một khoảng là:

    h = s(20) = 196.20 - 4,9.20^{2} =1960m

    Vậy tại thời điểm vận tốc của viên đạn bằng 0 thì viên đạn cách mặt đất 1960m.

  • Câu 14: Nhận biết

    Tính đạo hàm của hàm số

    Xác định đạo hàm của hàm số y = \pi^{x}.

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a;(a > 0;a eq 1)

    Vậy y' = \pi^{x}.\ln\pi

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Tính đạo hàm cấp hai của hàm số y = f(x) = x^{3} tạo điểm x = 1?

    Ta có: y = f(x) = x^{3}

    \Rightarrow f'(x) =
3x^{2}

    \Rightarrow f''(x) = 3.2x =
6x

    \Rightarrow f''(1) = 3.2.1 =
6

  • Câu 16: Vận dụng cao

    Tìm số giá trị k thỏa mãn yêu cầu bài toán

    Cho hàm số y = f(x) = x^{3} + 6x^{2} + 9x
+ 3\ \ (C). Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox,\
\ Oy tương ứng tại AB sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?

    Gọi M_{1}\left( x_{1};f\left( x_{1}
\right) \right); M_{2}\left(
x_{2};f\left( x_{2} \right) \right) với là hai tiếp điểm mà tại đó tiếp tuyến có cùng hệ số góc.

    Ta có y' = 3x^{2} + 12x + 9

    Khi đó :

    k = 3x_{1}^{2} + 12x_{1} + 9 =
3x_{2}^{2} + 12x_{2} + 9

    \Leftrightarrow \left( x_{1} - x_{2}
\right)\left( x_{1} + x_{2} + 4 \right) = 0

    \Leftrightarrow x_{1} + x_{2} = - 4 =
S(1)

    Hệ số góc của đường thẳng M_{1}M_{2} là:

    k' = \pm \frac{OB}{OA} = \pm
\frac{1}{2017} = \frac{f\left( x_{2} \right) - f\left( x_{1}
\right)}{x_{2} - x_{1}}

    \Leftrightarrow \pm \frac{1}{2017} =
\left( x_{1} + x_{2} \right)^{2} - x_{1}x_{2} + 6\left( x_{1} + x_{2}
\right) + 9

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1}x_{2} = \dfrac{2016}{2017} = P \\x_{1}x_{2} = \dfrac{2018}{2017} = P\end{matrix} \right.\ (2)

    Với \left\{ \begin{matrix}x_{1} + x_{2} = - 4 = S \\x_{1}x_{2} = \dfrac{2016}{2017} = P\end{matrix} \right., do S^{2}
> 4P nên \exists hai cặp x_{1},x_{2} \Rightarrow \exists 1 giá trị k

    Với \left\{ \begin{matrix}x_{1} + x_{2} = - 4 = S \\x_{1}x_{2} = \dfrac{2018}{2017} = P\end{matrix} \right., do S^{2}
> 4P nên \exists hai cặp x_{1},x_{2} \Rightarrow \exists 1 giá trị k

    Vậy có tất cả 2 giá trị kthỏa mãn yêu cầu đề bài.

  • Câu 17: Vận dụng cao

    Tính tổng S

    Tính tổng

    S = 2.1.C_{2021}^{2} + 4.3.C_{2021}^{4}
+ ... + 2k.(2k - 1).C_{2021}^{2k} + ... +
2020.2019.C_{2021}^{2020}

    Xét

    f(x) = (x + 1)^{2021} = C_{2021}^{0} +
C_{2021}^{1}x + C_{2021}^{2}x^{2} + ... + C_{2021}^{2020}x^{2020} +
C_{2021}^{2021}x^{2021}

    \Rightarrow f'(x) = 2021(x +
1)^{2020} = C_{2021}^{1}x + 2C_{2021}^{2}x + ... +
2020C_{2021}^{2020}x^{2019} + 2021C_{2021}^{2021}x^{2020}

    \Rightarrow f''(x) =
2021.2020.(x + 1)^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2}x +
...

    + 2020.2019.C_{2021}^{2020}x^{2018} +
2021.2020.C_{2021}^{2021}x^{2019}

    \Rightarrow f''(1) =
2021.2020.2^{2019} = 2C_{2021}^{2} + 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} +
2021.2020.C_{2021}^{2021}

    \Rightarrow f''( - 1) = 0 =
2C_{2021}^{2} - 3.2C_{2021}^{2} + ...

    + 2020.2019.C_{2021}^{2020} -
2021.2020.C_{2021}^{2021}

    \Rightarrow f''(1) +
f''( - 1) = 2021.2020.2^{2019}

    = 2.\left\lbrack 2.C_{2021}^{2} +
4.3C_{2021}^{4} + ... + 2020.2019.C_{2021}^{2020}
ightbrack

    \Leftrightarrow 2021.2020.2^{2018} =
2.C_{2021}^{2} + 4.3C_{2021}^{4} + ... +
2020.2019.C_{2021}^{2020}

    \Leftrightarrow 2021.2020.2^{2018} =
S

  • Câu 18: Vận dụng

    Tìm tham số m thỏa mãn yêu cầu bài toán

    Định m để đồ thị hàm sốy = x^{3} - mx^{2} + 1 tiếp xúc với đường thẳng d:y = 5?

    Đường thẳng y = x^{3} - mx^{2} +
1 và đồ thị hàm số y = 5 tiếp xúc nhau

    \Leftrightarrow \left\{ \begin{matrix}
x^{3} - mx^{2} + 1 = 5\ \ \ (1) \\
3x^{2} - 2mx = 0\ \ \ \ \ \ (2)
\end{matrix} \right. có nghiệm.

    .(2) \Leftrightarrow x(3x - 2m) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{2m}{3}\end{matrix} \right..

    + Với x = 0 thay vào (1) không thỏa mãn.

    + Với x = \frac{2m}{3} thay vào (1) ta có: m^{3} = - 27 \Leftrightarrow m = - 3.

  • Câu 19: Thông hiểu

    Điền đáp án vào chỗ trống

    Cho hàm số f(x) =
\frac{x - 1}{\sqrt{x^{2} + 1}} . Biết f'(x) = \frac{ax + b}{\left( x^{2} + 1
ight)\sqrt{x^{2} + 1}},\forall x . Tính giá trị biểu thức S = 2a + b ?

    Kết quả: 3

    Đáp án là:

    Cho hàm số f(x) =
\frac{x - 1}{\sqrt{x^{2} + 1}} . Biết f'(x) = \frac{ax + b}{\left( x^{2} + 1
ight)\sqrt{x^{2} + 1}},\forall x . Tính giá trị biểu thức S = 2a + b ?

    Kết quả: 3

    Ta có: f(x) = \frac{x - 1}{\sqrt{x^{2} +
1}}

    \Rightarrow f'(x) = \left( \frac{x -
1}{\sqrt{x^{2} + 1}} ight)'

    = \frac{(x - 1)'\sqrt{x^{2} + 1} -
\left( \sqrt{x^{2} + 1} ight)'(x - 1)}{\left( \sqrt{x^{2} + 1}
ight)^{2}}

    = \dfrac{\sqrt{x^{2} + 1} - (x -1).\dfrac{x}{\sqrt{x^{2} + 1}}}{x^{2} + 1}

    = \frac{x^{2} + 1 - x^{2} + x}{\left(
x^{2} + 1 ight)\sqrt{x^{2} + 1}}

    = \frac{x + 1}{\left( x^{2} + 1
ight)\sqrt{x^{2} + 1}} \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.

    \Rightarrow S = 2a + b = 2.1 + 1 =
3

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Đạo hàm cấp hai của hàm số y = \tan x là:

    Tập xác định D = R\backslash\left\{
\frac{\pi}{2} + k\pi;k\mathbb{\in Z} ight\}

    Ta có: y = \tan x

    \Rightarrow y' =\frac{1}{\cos^{2}x}

    \Rightarrow y'' = \frac{-1.\left( \cos^{2}x ight)'}{\left( \cos^{2}x ight)^{2}} = -\frac{2\cos x.\left( \cos x ight)'}{\cos^{4}x} =\frac{2\sin x}{\cos^{3}x}

  • Câu 21: Vận dụng cao

    Tính gia tốc của chuyển động

    Biểu diễn chuyển động của một chất điểm (v là vận tốc phụ thuộc vào thời gian t) như đồ thị hình vẽ:

    Tính gia tốc của vật lúc t =
0,25(h).

    Dễ thấy vận tốc của chuyển động được biểu diễn là một parabol

    Gọi phương trình vận tốc của chất điểm là v(t) = mt^{2} + nt + c

    Đồ thị đi qua điểm (0;0);I\left(
\frac{1}{2};8 ight);M(1;0) ta có hệ phương trình:

    \left\{ \begin{matrix}
c = 0 \\
\frac{1}{4}m + \frac{1}{2}n + c = 8 \\
m + m + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
m = - 32 \\
n = 32 \\
\end{matrix} ight.

    Vậy v(t) = - 32t^{2} + 32t

    Gia tốc của vật là a(t) = v'(t) = -
64t + 32

    Vậy gia tốc của vật lúc t =
0,25(h) là:

    a(0,25) = - 64.0,25 + 32 = 16\left(
km/h^{2} ight)

  • Câu 22: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =\left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ \ khi\ x eq 1 \\- \dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tính đạo hàm của hàm số tại x_{0} = 1?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -
4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -
1}{\sqrt{3x + 1} + 2x} = - \frac{5}{4} eq f(1)

    Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1

  • Câu 23: Thông hiểu

    Điền đáp án vào ô trống

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Vận tốc tức thời là

    v(t) = s'(t) = \frac{1}{3}t^{3} -
3t^{2} + 12t + 10

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3 \geq 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là v(3) = \frac{1}{3}.(3)^{3} -
3.(3)^{2} + 12.3 + 10 = 28(m/s)

  • Câu 24: Nhận biết

    Định nghĩa đạo hàm

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 26: Vận dụng

    Viết phương trình tiếp tuyến của (C)

    Cho hàm số y = \frac{2x + 2}{x -
1} có đồ thị là (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến tạo với hai trục tọa độ một tam giác vuông cân.

    Hàm số xác định với mọi x \neq
1.

    Ta có: y' = \frac{- 4}{(x -
1)^{2}}

    Tiệm cận đứng: x = 1; tiệm cận ngang: y = 2; tâm đối xứng I(1;2)

    Gọi M(x_{0};y_{0}) là tiếp điểm, suy ra phương trình tiếp tuyến của (C):

    \Delta:y = \frac{- 4}{(x_{0} - 1)^{2}}(x
- x_{0}) + \frac{2x_{0} + 2}{x_{0} - 1}.

    Vì tiếp tuyến tạo với hai trục tọa độ một tam giác vuông cân nên hệ số góc của tiếp tuyến bằng \pm
1.

    \frac{- 4}{(x_{0} - 1)^{2}} = \pm 1
\Leftrightarrow x_{0} = - 1,x_{0} = 3

    x_{0} = - 1 \Rightarrow y_{0} = 0
\Rightarrow \Delta:y = - x - 1.

    x_{0} = 3 \Rightarrow y_{0} = 4
\Rightarrow \Delta:y = - x + 7.

  • Câu 27: Thông hiểu

    Tính đạo hàm lượng giác

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

     Ta có:

    \begin{matrix}  y' = \left( {{x^2}} ight)\prime \tan x + \left( {\tan x} ight)'.{x^2} + \left( {\sqrt x } ight)\prime \hfill \\   = 2x\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng cao

    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = x(x + 1)(x + 2)(x +3)...(x + n) với n \in\mathbb{N}^{*}. Tính f'(0).

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}(x + 1)(x +2)...(x + n) = n!

  • Câu 29: Thông hiểu

    Chọn mệnh đề sai

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 30: Thông hiểu

    Chọn đáp án đúng

    Đạo hàm bậc hai của hàm số y = x\sqrt{1 +
x^{2}} là:

    Ta có:

    y = x\sqrt{1 + x^{2}}

    \Rightarrow y' = \frac{2x^{2} +
1}{\sqrt{1 + x^{2}}}

    \Rightarrow y'' = \frac{2x^{3} +
3x}{\left( 1 + x^{2} ight)\sqrt{1 + x^{2}}}

  • Câu 31: Nhận biết

    Xác định f''(x)

    Tính đạo hàm cấp hai của hàm số y = \cos^{2}x?

    Ta có: y = \cos^{2}x

    \Rightarrow y' = 2\cos x.\left( - \sin x ight) = - 2\sin2x

    \Rightarrow y'' = -2\cos2x

  • Câu 32: Thông hiểu

    Tìm đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \frac{x + 3}{\sqrt{x^{2} + 1}}?

    Ta có:

    y = \frac{x + 3}{\sqrt{x^{2} + 1}}
\Rightarrow y' = \left( \frac{x + 3}{\sqrt{x^{2} + 1}}
ight)'

    \Rightarrow y' = \dfrac{\sqrt{x^{2} +1} - \dfrac{(x + 3)x}{\sqrt{x^{2} + 1}}}{x^{2} + 1} = \dfrac{1 -3x}{\left( x^{2} + 1 ight)\sqrt{x^{2} + 1}}

  • Câu 33: Thông hiểu

    Tìm vận tốc lớn nhất của chuyển động

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 34: Vận dụng

    Xác định số nghiệm của phương trình

    Cho hàm số y =
\sin x + \cos x. Có bao nhiêu nghiệm thuộc \lbrack 0;3\pibrack thỏa mãn phương trình y'' = 0?

    Ta có:

    y = \sin x + \cos x

    \Rightarrow y' = \cos x - \sin
x

    \Rightarrow y'' = - \sin x -
\cos x

    Lại có y'' = 0 \Leftrightarrow -
\sin x - \cos x = 0

    \Leftrightarrow - \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight) = 0

    \Leftrightarrow x + \frac{\pi}{4} =
k\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{4} + k\pi \leq 3\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{4} \leq k \leq \dfrac{13}{4} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2;3ight\}

    Vậy có 3 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 35: Nhận biết

    Chọn mệnh đề sai

    Cho hàm số y = f(x)có đạo hàm tại x0f'(x). Mệnh đề nào sau đây sai?

    Từ định nghĩa ta rút ra kết luận:

    Đáp án sai là: f'\left( x_{0} ight)= \lim_{x ightarrow x_{0}}\frac{f\left( x + x_{0} ight) - f\left(x_{0} ight)}{x - x_{0}}

    Đáp ánf'\left( x_{0} ight) =\lim_{x ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -x_{0}} đúng theo định nghĩa

    Đáp án f'\left( x_{0} ight) =\lim_{\Delta x ightarrow 0}\frac{f\left( x_{0} + \Delta x ight) -f\left( x_{0} ight)}{\Delta x} đúng vì

    Đặt x = x_{0} + h => \left\{ \begin{matrix}x - x_{0} = h \\x ightarrow x_{0} \Rightarrow h ightarrow 0 \\\end{matrix} ight.

    Đáp án f'\left( x_{0} ight) =\lim_{h ightarrow 0}\frac{f\left( x_{0} + h ight) - f\left( x_{0}ight)}{h} đúng vì

    Đặt x = x_{0} + \Delta x=> \left\{ \begin{matrix}x - x_{0} = \Delta x \\x ightarrow x_{0} \Rightarrow \Delta x ightarrow 0 \\\end{matrix} ight.

  • Câu 36: Thông hiểu

    Phân tích sự đúng sai của các khẳng định đã cho

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 37: Nhận biết

    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 38: Nhận biết

    Tính đạo hàm của hàm số

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 39: Thông hiểu

    Phân tích sự đúng sai của các khẳng định

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 40: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số y =
f(x) = \sqrt{1 + 3x - x^{2}}. Khẳng định nào dưới đây đúng?

    Ta có: y = f(x) = \sqrt{1 + 3x -
x^{2}}

    \Rightarrow \left\{ \begin{matrix}y^{2} = 1 + 3x - x^{2} \\y' = \dfrac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} \\\end{matrix} ight.

    Ta có:

    2.y.y'' = 2.\sqrt{1 + 3x -
x^{2}}.\left( \frac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} ight) = 3 -
2x

    \Rightarrow 2(y')^{2} +
2y.y'' = - 2

    \Rightarrow (y')^{2} + y.y''
= - 1

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo