Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 7: Đạo hàm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án đúng

    Tính đạo hàm cấp hai của hàm số y = x^{5} - 3x^{4} + x + 1,\forall x\mathbb{\in
R}.

    Ta có: y = x^{5} - 3x^{4} + x +
1

    \Rightarrow y' = 5x^{4} - 12x^{3} +
1

    \Rightarrow y'' = 20x^{3} -
36x^{2}

  • Câu 2: Nhận biết

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y =  - \frac{1}{2}\sin \left( {\frac{\pi }{3} - {x^2}} ight)

    Ta có:

    \begin{matrix}  y =  - \dfrac{1}{2}\sin \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\   \Rightarrow y\prime  = \cos \left( {\dfrac{\pi }{3} - {x^2}} ight).\left( {\dfrac{\pi }{3} - {x^2}} ight)\prime  \hfill \\   =  - 2x.\cos \left( {\dfrac{\pi }{3} - {x^2}} ight) \hfill \\ \end{matrix}

     

  • Câu 3: Thông hiểu

    Điền đáp án vào ô trống

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Đáp án là:

    Một chất điểm chuyển động được biểu diễn bởi phương trình S(t) = \frac{1}{12}t^{4} -
t^{3} + 6t^{2} + 10t,(t > 0) , t tính bằng giây, S(t) tính bằng mét. Tại thời điểm gia tốc của chất điểm đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

    Kết quả: 28 (m/s)

    Vận tốc tức thời là

    v(t) = s'(t) = \frac{1}{3}t^{3} -
3t^{2} + 12t + 10

    Gia tốc tức thời của chất điểm là:

    a(t) = v'(t) = t^{2} - 6t + 12 = (t
- 3)^{2} + 3 \geq 3

    Vậy gia tốc đạt giá trị nhỏ nhất khi t = 3. Khi đó vận tốc của chất điểm là v(3) = \frac{1}{3}.(3)^{3} -
3.(3)^{2} + 12.3 + 10 = 28(m/s)

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 3}\frac{f(x) - f(3)}{x - 3} =
2. Chọn khẳng định đúng?

    Hàm số y = f(x) có đạo hàm tại điểm x_{0}

    f'\left( x_{0} ight) = \lim_{x
ightarrow x_{0}}\frac{f(x) - f\left( x_{0} ight)}{x -
x_{0}}

    Nên khẳng định đúng là f'(3) =
2

  • Câu 5: Thông hiểu

    Viết phương trình tiếp tuyến

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 1. Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x_{0} thỏa mãn phương trình f''(x) = 0?

    Ta có:

    f'(x) = 3x^{2} - 6x \Rightarrow
f''(x) = 6x - 6

    Ta có:

    f''(x) = 0

    \Leftrightarrow 6x - 6 = 0
\Leftrightarrow x = 1(tm)

    Khi đó f'(1) = - 3 \Rightarrow M(1; -
1)

    Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là

    y = f'(1)(x - 1) + f(1)

    \Leftrightarrow 3x + y - 2 =
0

  • Câu 6: Thông hiểu

    Tìm vận tốc lớn nhất của chuyển động

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 7: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 8: Thông hiểu

    Tính đạo hàm cấp hai tại một điểm

    Cho hàm số f(x)
= (x + 10)^{6}. Tính f''(2)?

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 30.(x +
10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 9: Vận dụng

    Tìm giá trị m, n thỏa mãn điều kiện

    Cho hàm số f(x)=\begin{cases}\ mx^{2}+2x+2 & \text{ khi } x>0 \\ nx+1 & \text{ khi } x\leq 0 \end{cases}. Tìm tất cả các giá trị của các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 2 \hfill \\  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 1 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) e \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) \hfill \\ \end{matrix}

    => Hàm số không liên tục tại x = 0. Do đó f(x) không có đạo hàm tại x = 0

    => Không tồn tại các tham số m, n sao cho f(x) có đạo hàm tại điểm x = 0.

  • Câu 10: Thông hiểu

    Xác định đạo hàm của hàm số

    Đạo hàm của hàm số y=\frac{3}{x}+\frac{2}{x^{2}}-\frac{7}{x^{3}}+\frac{6}{x^{5}} bằng biểu thức nào dưới đây?

    Ta có:

    \begin{matrix}  y = \dfrac{3}{x} + \dfrac{2}{{{x^2}}} - \dfrac{7}{{{x^3}}} + \dfrac{6}{{{x^5}}} \hfill \\   \Rightarrow y' = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{{2.2x}}{{{x^4}}} + \dfrac{{7.3.{x^2}}}{{{x^6}}} - \dfrac{{6.5.{x^4}}}{{{x^{10}}}} \hfill \\   = \dfrac{{ - 3}}{{{x^2}}} - \dfrac{4}{{{x^3}}} + \dfrac{{21}}{{{x^4}}} - \dfrac{{30}}{{{x^6}}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Xác định đạo hàm của hàm số

    Đạo hàm của hàm số y = \frac{x + 1}{\sqrt{x}} bằng biểu thức nào sau đây?

    Ta có:y = \frac{x +
1}{\sqrt{x}}

    \Rightarrow y' = \frac{(x +
1)'.\sqrt{x} - \left( \sqrt{x} ight)'(x + 1)}{\left( \sqrt{x}
ight)^{2}}

    = \dfrac{\sqrt{x} - \dfrac{1}{2\sqrt{x}}(x+ 1)}{x} = \dfrac{\dfrac{2x - x - 1}{2\sqrt{x}}}{x} = \dfrac{x -1}{2x\sqrt{x}}

  • Câu 12: Thông hiểu

    Tính đạo hàm

    Đạo hàm của hàm số y=(\frac{3}{x}-2x)(\sqrt{x}-4) bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \left( {\dfrac{3}{x} - 2x} ight)\left( {\sqrt x  - 4} ight) \hfill \\   \Rightarrow y' = \left( {\dfrac{3}{x} - 2x} ight)'\left( {\sqrt x  - 4} ight) + \left( {\sqrt x  - 4} ight)'\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \left( {\dfrac{{ - 3}}{{{x^2}}} - 2} ight)\left( {\sqrt x  - 4} ight) + \left( {\dfrac{1}{{2\sqrt x }}} ight)\left( {\dfrac{3}{x} - 2x} ight) \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3\sqrt x }}{{{x^2}}} + \dfrac{{12}}{{{x^2}}} - 2\sqrt x  + 8 + \dfrac{3}{{2x\sqrt x }} - \sqrt x  \hfill \\   \Leftrightarrow y' = \dfrac{{ - 3}}{{2x\sqrt x }} - 3\sqrt x  + \dfrac{{12}}{{{x^2}}} + 8 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Tính đạo hàm của hàm phân thức

    Tính đạo hàm của hàm số y=\frac{x(1-3x)}{x+1}

    Ta có:

    \begin{matrix}  y = \dfrac{{x(1 - 3x)}}{{x + 1}} = \dfrac{{x - 3{x^2}}}{{x + 1}} \hfill \\   \Rightarrow y' = \dfrac{{\left( {x - 3{x^2}} ight)'\left( {x + 1} ight) - \left( {x - 3{x^2}} ight)\left( {x + 1} ight)'}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{\left( {1 - 6x} ight)\left( {x + 1} ight) - \left( {x - 3{x^2}} ight)}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{x + 1 - 6{x^2} - 6x - x + 3{x^2}}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   = \dfrac{{ - 3{x^2} - 6x + 1}}{{{{\left( {x + 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Tính đạo hàm cấp hai của hàm số

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 15: Thông hiểu

    Giải bất phương trình

    Cho hàm số y =
f(x) = x^{3} - 3x^{2} + 2x + 1. Tìm tập nghiệm của bất phương trình f''(x) > 0?

    Ta có:

    y = f(x) = x^{3} - 3x^{2} + 2x +
1

    \Rightarrow f'(x) = 3x^{2} - 6x +
2

    \Rightarrow f''(x) = 6x -
6

    Ta lại có:

    f''(x) > 0

    \Leftrightarrow 6x - 6 > 0
\Leftrightarrow x > 1

    Vậy tập nghiệm của phương trình là: S =
(1; + \infty)

  • Câu 16: Nhận biết

    Tính đạo hàm của hàm số

    Đạo hàm của hàm số y = 2^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 2^{x} \Rightarrow y' =2^{x}.\ln2

  • Câu 17: Vận dụng cao

    Tính giá trị biểu thức T

    Cho hàm số f(x) = \left\{ \begin{matrix}ax^{2} + bx + 1;x \geq 0 \\ax - b - 1;x < 0 \\\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} =0. Hãy tính T = a + 2b

    Ta có: \left\{ \begin{matrix}f(0) = 1 \\\lim_{x ightarrow 0^{+}}f(x) = \lim_{x ightarrow 0^{+}}\left( ax^{2}+ bx + 1 ight) = 1 \\\lim_{x ightarrow 0^{-}}f(x) = \lim_{x ightarrow 0^{-}}(ax - b - 1)= - b - 1 \\\end{matrix} ight.

    Để hàm số có đạo hàm tại x0 = 0 thì hàm số phải liên tục tại x0 = 0 nên:

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =\lim_{x ightarrow 0^{-}}f(x)

    \Rightarrow - b - 1 = 1 \Rightarrow b =- 2

    Khi đó: f(x) = \left\{ \begin{matrix}ax^{2} - 2x + 1;x \geq 0 \\ax + 1;x < 0 \\\end{matrix} ight.. Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{+}}\frac{ax^{2}- 2x + 1 - 1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -f(0)}{x}

    = \lim_{x ightarrow 0^{-}}\frac{ax + 1- x}{x} = \lim_{x ightarrow 0^{-}}(a) = a

    Hàm số có đạo hàm tại x_{0} = 0 thì a = - 2

    Vậy với a = - 2;b = - 2 thì hàm số có đạo hàm tại x_{0} = 0 khi đó T = - 6

  • Câu 18: Vận dụng cao

    Điền hướng dẫn giải bài toán vào chỗ trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu

    Chọn mệnh đề sai

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 20: Vận dụng

    Tính đạo hàm của hàm số tại x = 0

    Cho hàm số f(x) = \frac{x}{(x - 1)(x -2)....(x - 2019)}. Tính giá trị của f’(0)

    Ta có:

    f'(0) = \lim_{x ightarrow0}\frac{f(x) - f(0)}{x - 0}

    = \lim_{x ightarrow 0}\frac{1}{(x -1)(x - 2)....(x - 2019)}

    = \lim_{x ightarrow 0}\frac{1}{( -1).( - 2)....( - 2019)} = \frac{- 1}{2019!}

  • Câu 21: Vận dụng cao

    Tính tổng tất cả các phần tử của S

    Cho hàm số y = - x^{3} + 4x^{2} +
1 có đồ thị là (C) và điểm M(m;1). Gọi S là tập hợp tất cả các giá trị thực của m để qua M kẻ được đúng 2 tiếp tuyến đến đồ thị (C). Tổng giá trị tất cả các phần tử của S bằng:

    Phương trình tiếp tuyến của đồ thị (C) đi qua M(m;1) và có hệ số góc k là: y = k(x
- m) + 1.

    Để qua M kẻ được đúng 2 tiếp tuyến đến đồ thị (C) điều kiện là hệ phương trình sau có đúng hai nghiệm x phân biệt

    (I):\left\{ \begin{matrix}
- x^{3} + 4x^{2} + 1 = k(x - m) + 1 \\
\left( - x^{3} + 4x^{2} + 1 \right)' = k
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
- x^{3} + 4x^{2} + 1 = k(x - m) + 1\ \ \ \ (1) \\
- 3x^{2} + 8x = k\ \ \ \ (2)
\end{matrix} \right.

    Thay (2) vào (1) ta được

    - x^{3} + 4x^{2} + 1 = \left( - 3x^{2} +
8x \right)(x - m) + 1\Leftrightarrow x\left\lbrack 2x^{2} -
(3m + 4)x + 8m \right\rbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
2x^{2} - (3m + 4)x + 8m = 0\ \ \ (3)
\end{matrix} \right.

    Như vậy, hệ (I) có đúng hai nghiêm khi và chỉ khi phương trình (3) có một nghiệm bằng 0 và một nghiệm khác 0; hoặc phương trình (3) có nghiệm duy nhất khác 0.

    Phương trình (3) có nghiệm x = 0 khi và chỉ khi m = 0.

    Khi đó, phương trình (3) trở thành: 2x^{2} - 4x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2
\end{matrix} \right.;

    Do đó m = 0 thỏa mãn.

    Phương trình (3) có nghiệm duy nhất khác 0 điều kiện là

    \left\{ \begin{matrix}\Delta = (3m + 4)^{2} - 4.2.8m = 0 \\\dfrac{3m + 4}{4} \neq 0\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}\Delta = (3m + 4)^{2} - 4.2.8m = 0 \\\dfrac{3m + 4}{4} \neq 0\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = \dfrac{4}{9}\end{matrix} \right..

    Như vậy S = \left\{ 0;\frac{4}{9};4
\right\}.

    Tổng giá trị tất cả các phần tử của S0 +
\frac{4}{9} + 4 = \frac{40}{9}.

  • Câu 22: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 23: Nhận biết

    Chọn phát biểu đúng

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Đạo hàm của hàm số y = 6^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 6^{x} \Rightarrow y' =6^{x}.\ln6

  • Câu 25: Nhận biết

    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 26: Nhận biết

    Điền kết quả vào ô trống

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 27: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \sin \left( {\sin x} ight)

    Ta có: 

    \begin{matrix}  y = \sin \left( {\sin x} ight) \hfill \\   \Rightarrow y\prime  = \left[ {\sin \left( {\sin x} ight)} ight]\prime  \hfill \\   = \left( {\sin x} ight)'\cos \left( {\sin x} ight) \hfill \\   = \cos x.\cos \left( {\sin x} ight) \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Tính số gia của hàm số

    Tính số gia của hàm số y =\frac{x^{2}}{2} tại điểm x0 = -1 ứng với số gia \Delta x

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f( - 1 + \Deltax) - f( - 1)

    \Rightarrow \Delta y = \frac{( - 1 +\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y = \frac{1 - 2\Deltax + (\Delta x)^{2}}{2} - \frac{1}{2}

    \Rightarrow \Delta y =\frac{1}{2}(\Delta x)^{2} - \Delta x

  • Câu 29: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 30: Thông hiểu

    Tính đạo hàm của hàm số

    Cho hàm số f(x) =
ax^{3} + \frac{b}{x}. Biết \left\{
\begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.. Tính đạo hàm của hàm số tại điểm x = \sqrt{2}?

    Ta có:

    f'(x) = 3ax^{2} -
\frac{b}{x^{2}}

    \Rightarrow \left\{ \begin{matrix}f'(1) = 3a - b \\f'( - 2) = 12a - \dfrac{b}{4} \\\end{matrix} ight. kết hợp với \left\{ \begin{matrix}
f'(1) = 1 \\
f'( - 2) = - 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3a - b = 1 \\12a - \dfrac{b}{4} = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - \dfrac{1}{5} \\b = - \dfrac{8}{5} \\\end{matrix} ight.

    \Rightarrow f'\left( \sqrt{2}
ight) = 6a - \frac{b}{2} = - \frac{2}{5}

  • Câu 31: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số y =
f(x) = \sqrt{1 + 3x - x^{2}}. Khẳng định nào dưới đây đúng?

    Ta có: y = f(x) = \sqrt{1 + 3x -
x^{2}}

    \Rightarrow \left\{ \begin{matrix}y^{2} = 1 + 3x - x^{2} \\y' = \dfrac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} \\\end{matrix} ight.

    Ta có:

    2.y.y'' = 2.\sqrt{1 + 3x -
x^{2}}.\left( \frac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} ight) = 3 -
2x

    \Rightarrow 2(y')^{2} +
2y.y'' = - 2

    \Rightarrow (y')^{2} + y.y''
= - 1

  • Câu 32: Nhận biết

    Tìm đạo hàm cấp hai của hàm số

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 33: Thông hiểu

    Tìm tọa độ điểm A

    Cho đồ thị hàm số (C):y = \frac{1}{3}x^{3} - x +
\frac{2}{3} . Tìm điểm A có hoành độ âm trên đồ thị (C) sao cho tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0?

    Tiếp tuyến tại A vuông góc với đường thẳng x + 3y - 2 = 0 nên tiếp tuyến có hệ số góc k = 3

    Ta có: y'(x) = x^{2} - 1

    Xét phương trình y'(x) = 3
\Leftrightarrow x^{2} - 1 = 3 \Leftrightarrow x = \pm 2

    Do A có hoành độ âm nên x = -2 thỏa mãn

    Với x = -2 thay vào phương trình (C) => y = 0

    Vậy điểm A cần tìm là A(-2; 0).

  • Câu 34: Vận dụng

    Chọn đáp án chính xác

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 35: Vận dụng

    Xác định tọa độ diểm M

    Trên đồ thị của hàm số y = \frac{1}{x -
1} có điểm M sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 2. Tọa độ M là:

    Ta có: y' = - \frac{1}{(x -
1)^{2}}. Lấy điểm M\left(
x_{0};y_{0} \right) \in (C).

    Phương trình tiếp tuyến tại điểm M là: y = -
\frac{1}{\left( x_{0} - 1 \right)^{2}}.\left( x - x_{0} \right) +
\frac{1}{x_{0} - 1}\ \ (\Delta).

    Giao với trục hoành: (\Delta) \cap Ox =
A\left( 2x_{0} - 1;0 \right).

    Giao với trục tung: (\Delta) \cap Oy =
B\left( 0;\frac{2x_{0} - 1}{\left( x_{0} - 1 \right)^{2}}
\right)

    S_{OAB} = \frac{1}{2}OA.OB
\Leftrightarrow 4 = \left( \frac{2x_{0} - 1}{x_{0} - 1} \right)^{2}
\Leftrightarrow x_{0} = \frac{3}{4}.

    Vậy M\left( \frac{3}{4}; - 4
\right).

  • Câu 36: Nhận biết

    Xác định đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \frac{\ln x}{x}?

    Ta có:

    y' = \left( \frac{\ln x}{x}ight)' = \frac{\left( \ln x ight)'.x - x'\ln x}{x^{2}} =\frac{1 - \ln x}{x^{2}}

  • Câu 37: Thông hiểu

    Phân tích sự đúng sai của các khẳng định

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 38: Vận dụng

    Tính đạo hàm của hàm số

    Cho hàm số y =
f(x) = \frac{x}{(x - 1)(x - 2)(x - 3)...(x - 2020)}. Tính đạo hàm của hàm số tại x = 0?.

    Ta có:

    Đặt g(x) = (x - 1)(x - 2)(x - 3)...(x -
2020)

    Khi đó: f(x) =
\frac{x}{g(x)}

    \Rightarrow f'(x) = \frac{x'g(x)
- g'(x).x}{g^{2}(x)} = \frac{1}{g(x)} -
x.\frac{g'(x)}{g^{2}(x)}

    \Rightarrow f'(0) = \frac{1}{g(0)} -
x.\frac{g'(0)}{g^{2}(0)} = \frac{1}{g(0)}

    = \frac{1}{( - 1)( - 2)...( - 2020)} =
\frac{1}{2020!}

  • Câu 39: Vận dụng cao

    Tính giá trị biểu thức

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 40: Thông hiểu

    Giải phương trình

    Cho hàm số y =
f(x) = \frac{2x + 1}{1 - x}. Giải phương trình f'(x) + f''(x) = 0.

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có:

    y = f(x) = \frac{2x + 1}{1 -
x}

    \Rightarrow f'(x) = \frac{3}{(x -
1)^{2}} \Rightarrow f''(x) = - \frac{6}{(x -
1)^{3}}

    Lại có:

    f'(x) + f''(x) =
0

    \Leftrightarrow \frac{3}{(x - 1)^{2}} -
\frac{6}{(x - 1)^{3}} = 0

    \Leftrightarrow \frac{2}{x - 1} = 1
\Leftrightarrow x = 3(tm)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo