Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 7: Đạo hàm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn khẳng định đúng

    Vận tốc của một chất điểm chuyển động được biểu thị bởi công thức v(t) = 8t + 3t^{2}, trong đó t > 0, t tính bằng giây và v(t) tính bằng mét/giây. Tìm gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 mét/giây.

    Ta có: a(t) = v'(t) = 8 +6t

    Ta có:

    v(t) = 11

    \Rightarrow 11 = 8t +3t^{2}

    \Rightarrow t = 1(tm)

    Gia tốc của chất điểm là:

    a(1) = v'(1) = 8 + 6.1 = 14\left(m/s^{2} ight)

    Vậy gia tốc của chất điểm tại thời điểm mà vận tốc chuyển động là 11 m/s là 14m/s^{2}

  • Câu 2: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 3: Nhận biết

    Tính đạo hàm cấp hai tại một điểm

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 4: Thông hiểu

    Viết phương trình tiếp tuyến

    Hàm số y = -
x^{3} + 3x - 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung?

    Ta có: y' = - 3x^{2} + 3

    Giao điểm của (C) với trục tung có tọa độ là B(0; - 2)

    Tiếp tuyến của (C) tại điểm B(0; - 2) có phương trình là:

    y = y'(0)(x - 0) - 2 \Leftrightarrow
y = 3x - 2

  • Câu 5: Vận dụng

    Chọn đáp án đúng

    Cho hàm số f(x)
= \left\{ \begin{matrix}
ax^{2} + bx + 1\ \ \ ;\ x \geq 0 \\
ax - b - 1\ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.. Khi hàm số f(x) có đạo hàm tại x_{0} = 0. Chọn khẳng định đúng?

    Ta có: f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\left( ax^{2} + bx + 1 ight) = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(ax - b - 1) = - b - 1

    Để hàm số có đạo hàm tại x_{0} =
0 thì hàm số phải liên tục tại x_{0} = 0 nên

    f(0) = \lim_{x ightarrow 0^{+}}f(x) =
\lim_{x ightarrow 0^{-}}f(x)

    Suy ra - b - 1 = 1 \Rightarrow b = -
2

    Khi đó f(x) = \left\{ \begin{matrix}
ax^{2} - 2x + 1\ \ \ ;\ x \geq 0 \\
ax + 1\ \ \ \ \ \ \ \ \ \ \ \ \ ;\ x < 0 \\
\end{matrix} ight.

    Xét

    \lim_{x ightarrow 0^{+}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{+}}\frac{ax^{2} - 2x + 1 -
1}{x}

    = \lim_{x ightarrow 0^{+}}(ax - 2) = -
2

    \lim_{x ightarrow 0^{-}}\frac{f(x) -
f(0)}{x} = \lim_{x ightarrow 0^{-}}\frac{ax + 1 - 1}{x}

    = \lim_{x ightarrow 0^{-}}(a) =
a

    Hàm số có đạo hàm tại x_{0} = 0 khi đó a = - 2

  • Câu 6: Thông hiểu

    Chọn mệnh đề sai

    Cho hàm số y = f(x) có đạo hàm tại x_{0} là f'(x_{0}). Mệnh đề nào sau đây sai?

    Mệnh đề sai là f'(x_{0})=\underset{x \to x_{0}}{lim}\frac{f(x+x_{0})-f(x_{0})}{x-x_{0}}

  • Câu 7: Nhận biết

    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 8: Vận dụng

    Tính đạo hàm cấp n của hàm số

    Cho hàm số y =
x^{n}. Công thức tính y^{(n)} là:

    Ta có: y' = \left( x^{n} ight)'
= n.x^{n - 1}

    y'' = \left( n.x^{n - 1}
ight)' = n.(n - 1).x^{n - 2}

    y^{(3)} = \left( n.(n - 1).x^{n - 2}
ight)' = n.(n - 1)(n - 2).x^{n - 3}

    ….

    y^{(n - 1)} = n(n - 1)(n - 2)(n -
3)...(n - n + 1).x = n!x

    y^{(n)} = n!

  • Câu 9: Thông hiểu

    Chọn hệ thức đúng

    Cho hàm số y =
\tan x. Chọn hệ thức đúng?

    Ta có:

    y = \tan x \Rightarrow y' =\frac{1}{\cos^{2}x}

    Khi đó ta có:

    y' - y^{2} - 1 = \frac{1}{\cos^{2}x}- \tan^{2}x - 1

    = \frac{1}{\cos^{2}x} -\frac{1}{\cos^{2}x} - 1 = 0

  • Câu 10: Vận dụng cao

    Tính đạo hàm của hàm số

    Biết hàm số f(x) - f(2x) có đạo hàm bằng 5 tại x =
1 và đạo hàm bằng 7 tại x = 2. Tính đạo hàm của hàm số f(x) - f(4x) tại x = 1.

    Ta có:

    \left( f(x) - f(2x) \right)' =
f'(x) - 2f'(2x)

    \left\{ \begin{matrix}
f^{'(1)} - 2f^{'(2)} = 5 \\
f^{'(2)} - 2f^{'(4)} = 7
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
f^{'(1)} - 2f^{'(2)} = 5 \\
2f^{'(2)} - 4f^{'(4)} = 14
\end{matrix} \right.\

    \Rightarrow f'(1) - 4f'(4) =
19.

    Vậy f'(1) - f'(4) =
19.

  • Câu 11: Nhận biết

    Tính đạo hàm cấp hai của hàm số

    Cho hàm số y =f(x) = - 3\cos x. Đạo hàm cấp hai của hàm số y = f(x) tại điểm x_{0} = \frac{\pi}{2} là:

    Ta có:

    y = f(x) = - 3\cos x

    \Rightarrow f'(x) = - 3\sin x\Rightarrow f''(x) = 3\cos x

    \Rightarrow f''\left(\frac{\pi}{2} ight) = 3\cos\left( \frac{\pi}{2} ight) =0

  • Câu 12: Vận dụng cao

    Xác định công thức đạo hàm bậc n

    Biết f(x) =
\cos(x + a). Xác định công thức của f^{(21)}(x)?

    Ta có:

    f(x) = \cos(x + a)

    f'(x) = - \sin(x + a) = \cos\left( x
+ a + \frac{\pi}{2} ight)

    f''(x) = - \sin\left( x + a +
\frac{\pi}{2} ight) = \cos\left( x + a + \frac{2\pi}{2}
ight)

    f^{(21)}(x) = \cos\left( x + a +
\frac{21\pi}{2} ight) = \cos\left( x + a + \frac{\pi}{2}
ight)

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Tìm công thức đạo hàm của hàm số y = 3^{x^{2} - x}?

    Ta có:

    y = 3^{x^{2} - x}

    \Rightarrow y' = \left( x^{2} - xight)'.3^{x^{2} - x}.\ln3

    \Rightarrow y' = (2x - 1).3^{x^{2} -x}.\ln3

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Tính đạo hàm của hàm số sau: y = 4x^{2} - \sqrt{x} + \frac{1}{x}.

    Ta có: y = 4x^{2} - \sqrt{x} +
\frac{1}{x}

    \Rightarrow y' = 8x -
\frac{1}{2\sqrt{x}} - \frac{1}{x^{2}}

  • Câu 15: Vận dụng

    Tìm tập nghiệm của phương trình đã cho

    Cho hàm số f(x) = \ln\left( x^{2} - 3x
\right). Tập nghiệm S của phương trình f'(x) = 0 là:

    Điều kiện: x^{2} - 3x > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 3
\end{matrix} \right..

    Ta có f'(x) = \frac{2x - 3}{x^{2} -
3x} = 0 \Leftrightarrow 2x - 3 = 0 \Leftrightarrow x =
\frac{3}{2}

    Kết hợp với điều kiện, ta loại x =
\frac{3}{2}

    Vậy tập nghiệm của phương trình trên là S
= \varnothing

  • Câu 16: Thông hiểu

    Phân tích sự đúng sai của các khẳng định

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =
x^{2} ứng với x_{0} = 2;\Delta x =
1 bằng 5. Đúng||Sai

    b) Cho hàm số f(x) = \frac{1}{x^{2} - 2x
+ 5}. Giá trị f'(1) =
0 Đúng||Sai

    c) Đạo hàm của hàm số y = \left( x^{3} -
5 ight)\sqrt{x} trên khoảng (0; +
\infty) bằng biểu thức \frac{7}{2}\sqrt{x^{5}} +
\frac{5}{2\sqrt{x}} Sai||Đúng

    d) Phương trình tiếp tuyến của đồ thị hàm số y = x^{4} + x vuông góc với y = - \frac{1}{5}x + 2y = 5x + 2. Sai||Đúng

    a) Ta có: \Delta y = f(x + \Delta x) -
f(x) = (x + \Delta x)^{2} - x^{2}

    = x^{2} + 2x\Delta x + (\Delta x)^{2} -
x^{2} = 2x\Delta x + (\Delta x)^{2}(*)

    Thay x_{0} = 2;\Delta x = 1 vào (*) ta được:

    \Delta y = 2.2.1 + 1^{2} =
5

    b) Ta có f(x) = \frac{1}{x^{2} - 2x +
5}

    \Rightarrow f'(x) = - \frac{2x -
2}{\left( x^{2} - 2x + 5 ight)^{2}} \Rightarrow f'(1) =
0

    c) Ta có:

    y = \left( x^{3} - 5
ight)\sqrt{x}

    \Rightarrow y' = \left( x^{3} - 5
ight)'\sqrt{x} + \left( x^{3} - 5 ight).\left( \sqrt{x}
ight)'

    = 3x^{2}\sqrt{x} + \left( x^{3} - 5
ight).\frac{1}{2\sqrt{x}}

    = \frac{7}{2}\sqrt{x^{5}} -
\frac{5}{2\sqrt{x}}

    d) Giả sử tiếp tuyến có hệ số góc k. Vì tiếp tuyến vuông góc với đường thẳng y = - \frac{1}{5}x + 2 nên ta có: k.\left( - \frac{1}{5} ight) =
- 1 \Rightarrow k = 5

    Gọi M\left( x_{0};y_{0} ight) là tiếp điểm khi đó ta có: y'\left(
x_{0} ight) = 5

    Mặt khác y' = 4x^{3} + 1 \Rightarrow
y'\left( x_{0} ight) = 5 \Rightarrow x_{0} = 1 \Rightarrow y_{0} =
2

    Phương trình tiếp tuyến cần tìm là: y =
5(x - 1) + 2 = 5x - 3

  • Câu 17: Vận dụng

    Chọn mệnh đề đúng

    Cho hàm số y = - 2017e^{- x} - 3.e^{-
2x}. Mệnh đề nào dưới đây đúng?

    Đạo hàm cấp một: y' = 2017e^{- x} +
6e^{- 2x}.

    Đạo hàm cấp hai: y'' = - 2017e^{-
x} - 12e^{- 2x}.

    Khi đó:

    y'' + 3y' + 2y = - 2017e^{-x} - 12e^{- 2x}+ 3\left( 2017e^{- x} + 6e^{- 2x} \right)+ 2\left( -2017e^{- x} - 3.e^{- 2x} \right) = 0.

  • Câu 18: Nhận biết

    Tìm đạo hàm cấp hai của hàm số

    Với x\mathbb{\in
R}, đạo hàm cấp hai của hàm số y =
x^{6} - 4x^{3} + 2x + 2022 là:

    Ta có: y = x^{6} - 4x^{3} + 2x +
2022

    \Rightarrow y' = 6x^{5} - 12x^{2} +
2

    \Rightarrow y'' = 30x^{4} -
24x

  • Câu 19: Thông hiểu

    Tính đạo hàm cấp hai

    Đạo hàm cấp hai của hàm số y=\frac{1}{2x-3} bằng biểu thức nào dưới đây?

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{2x - 3}} \hfill \\   \Rightarrow y' = \dfrac{{ - \left( {2x - 3} ight)\prime }}{{{{\left( {2x - 3} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {2x - 3} ight)}^2}}} \hfill \\   \Rightarrow y'' =  - 2.\frac{{ - \left[ {{{\left( {2x - 3} ight)}^2}} ight]'}}{{{{\left( {2x - 3} ight)}^4}}} \hfill \\   = \dfrac{{2.2.2.\left( {2x - 3} ight)}}{{{{\left( {2x - 3} ight)}^4}}} = \dfrac{8}{{{{\left( {2x - 3} ight)}^3}}} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Xác định biểu thức đạo hàm

    Đạo hàm của hàm số y = \sqrt {{{\sin }^3}(2x + 1)} bằng biểu thức nào sau đây?

    Ta có: 

    \begin{matrix}  y = \sqrt {{{\sin }^3}(2x + 1)}  \hfill \\   \Rightarrow y\prime  = \dfrac{1}{{2\sqrt {{{\sin }^3}(2x + 1)} }}.\left[ {{{\sin }^3}\left( {2x + 1} ight)} ight]\prime  \hfill \\   = \dfrac{{2.3{{\sin }^3}\left( {2x + 1} ight).\cos \left( {2x + 1} ight)}}{{2\sqrt {{{\sin }^3}(2x + 1)} }} \hfill \\   = 3\sqrt {\sin \left( {2x + 1} ight)} .\cos \left( {2x + 1} ight) \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Chọn khẳng định đúng

    Cho hình tròn bán kính r có diện tích là S(r). Mệnh đề nào sau đây đúng?

    Ta có:

    S(r) = \pi.r^{2} \Rightarrow S'(r) =
2\pi.r

    Suy ra S'\left( r_{0}
ight) là chu vi của đường tròn bán kính r_{0}.

  • Câu 22: Nhận biết

    Chọn đáp án thích hợp

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 23: Thông hiểu

    Tìm x sao cho y" = 20

    Cho hàm số y=\frac{3x-4}{x+2}. Tìm x sao cho y" = 20

    Ta có:

    \begin{matrix}  y = \dfrac{{3x - 4}}{{x + 2}} \hfill \\   \Rightarrow y' = \dfrac{{3\left( {x + 2} ight) - \left( {3x - 4} ight)}}{{{{\left( {x + 2} ight)}^2}}} = \dfrac{{10}}{{{{\left( {x + 2} ight)}^2}}} \hfill \\   \Rightarrow y'' = \dfrac{{ - 10.2.\left( {x + 2} ight)}}{{{{\left( {x + 2} ight)}^4}}} = \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  y'' = 20,(xe-2) \hfill \\   \Leftrightarrow \dfrac{{ - 20}}{{{{\left( {x + 2} ight)}^3}}} = 20 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^3} =  - 1 \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Tính đạo hàm

    Đạo hàm của hàm số: y=4\sqrt{x}-\frac{5}{x}

    Ta có:

    \begin{matrix}  y = 4\sqrt x  - \dfrac{5}{x} \hfill \\   \Rightarrow y' = \dfrac{4}{{2\sqrt x }} + \dfrac{5}{{{x^2}}} = \dfrac{2}{{\sqrt x }} + \dfrac{5}{{{x^2}}} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Tính f''(x)

    Tính đạo hàm cấp hai tại điểm x_{0} = - 1 của hàm số f(x) = \frac{1}{2x - 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{1}{2} ight\}

    Ta có:

    f(x) = \frac{1}{2x - 1} \Rightarrow
f'(x) = \frac{- 2}{(2x - 1)^{2}}

    \Rightarrow f''(x) =
\frac{8}{(2x - 1)^{3}}

    \Rightarrow f''( - 1) =
\frac{8}{\left\lbrack 2.( - 1) - 1 ightbrack^{3}} = -
\frac{8}{27}

  • Câu 26: Thông hiểu

    Chọn hệ thức đúng

    Cho hàm số y =
e^{2x} + 2e^{- x}. Khẳng định nào dưới đây đúng?

    Ta có:

    y = e^{2x} + 2e^{- x}

    \Rightarrow y' = 2e^{2x} - 2e^{-
x}

    \Rightarrow y'' = \left( 2e^{2x}
- 2e^{- x} ight)' = 4e^{2x} + 2e^{- x}

    \Rightarrow y''' =
(y'')' = 8e^{2x} - 2e^{- x}

    \Rightarrow y''' -
y'' = 2y'

  • Câu 27: Thông hiểu

    Tính kết quả và điền vào chỗ tróng

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Đáp án là:

    Một chuyển động được xác định bởi phương trình S(t) = 2t^{4} + 6t^{2} - 3t +
1 , trong đó t tính bằng giây và S tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t =
2(s) bằng bao nhiêu?

    Kết quả: 108 m/s2

    Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: v(t) = S'(t) = 8t^{3} + 12t -
3

    Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường:

    a(t) = 24t^{2} + 12

    Tại thời điểm t = 2s thì gia tốc có giá trị là:

    a(2) = 24.(2)^{2} + 12 = 108\left(
m/s^{2} ight)

  • Câu 28: Nhận biết

    Điền đáp án vào ô trống

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Đáp án là:

    Cho hàm số y =
f(x) có đạo hàm thỏa mãn f'(6)
= 2 . Giá trị của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = 2

    Hàm số y = f(x) có tập xác định là D;x_{0} \in D. Nếu tồn tại giới hạn \lim_{x ightarrow x_{0}}\frac{f(x) -
f\left( x_{0} ight)}{x - x_{0}} thì giới hạn gọi là đạo hàm của hàm số tại điểm x_{0}

    Vậy kết quả của biểu thức \lim_{x
ightarrow 6}\frac{f(x) - f(6)}{x - 6} = f'(6) = 2

  • Câu 29: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số y =
f(x) được xác định bởi công thức f(x) = \left\{ \begin{matrix}
ax^{2} + bx\ \ \ khi\ x \geq 1 \\
2x - 1\ \ \ \ \ \ \ khi\ x < 1 \\
\end{matrix} ight. . Để hàm số đã cho có đạo hàm tại x = 1 thì giá trị biểu thức 2a + b bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{-}}\frac{2x - 1 - 1}{x - 1} =
2

    \lim_{x ightarrow 1 +}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{ax^{2} + bx - a - b}{x -
1}

    = \lim_{x ightarrow
1^{+}}\frac{a\left( x^{2} - 1 ight) + b(x - 1)}{x - 1} = \lim_{x
ightarrow 1^{+}}\frac{(x - 1)\left\lbrack a(x - 1) + b
ightbrack}{x - 1}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
a(x - 1) + b ightbrack = 2a + b

    Theo yêu cầu bài toán

    \lim_{x ightarrow 1^{-}}\frac{f(x) -
f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -
1}

    \Leftrightarrow 2a + b = 2

  • Câu 30: Vận dụng cao

    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2mx^{2} +
m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến \Delta với đồ thị (C) tại A cắt đường tròn (\gamma):\ x^{2} + (y - 1)^{2} = 4 tạo thành một dây cung có độ dài nhỏ nhất

    Đường tròn (\gamma):\ x^{2} + (y - 1)^{2}
= 4 có tâm I(0;\ 1), R = 2.

    Ta có A(1;\ 1 - m); y' = 4x^{3} - 4mx \Rightarrow y'(1) = 4 -
4m.

    Suy ra phương trình \Delta: y = (4 - 4m)(x - 1) + 1 - m.

    Dễ thấy \Delta luôn đi qua điểm cố định F\left( \frac{3}{4};\ 0
\right) và điểm F nằm trong đường tròn (\gamma).

     

    Giả sử \Delta cắt (\gamma) tại M, N.

    Thế thì ta có: MN = 2\sqrt{R^{2} -
d^{2}(I;\ \Delta)} = 2\sqrt{4 - d^{2}(I;\ \Delta)}.

    Do đó MN nhỏ nhất \Leftrightarrow d(I;\ \Delta) lớn nhất \Leftrightarrow d(I;\ \Delta) = IF
\Rightarrow \Delta\bot IF.

    Khi đó đường \Delta có 1 vectơ chỉ phương \overrightarrow{u}\bot\overrightarrow{IF} = \left(
\frac{3}{4};\  - 1 \right); \overrightarrow{u} = (1;\ \ 4 - 4m) nên ta có:

    \overrightarrow{u}.\overrightarrow{n} = 0\Leftrightarrow 1.\frac{3}{4} - (4 - 4m) = 0 \Leftrightarrow m =\frac{13}{16}.

  • Câu 31: Vận dụng

    Giải phương trình f'(x) = f"(x)

    Cho hàm số f(x)=\frac{2x-1}{x+1}. Giải phương trình f'(x) = f"(x)

    Ta có:

    \begin{matrix}  f(x) = \dfrac{{2x - 1}}{{x + 1}} \hfill \\   \Rightarrow f'\left( x ight) = \dfrac{{2\left( {x + 1} ight) - \left( {2x + 1} ight)}}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\   \Rightarrow f''\left( x ight) = \dfrac{{ - 2\left( {x + 1} ight)}}{{{{\left( {x + 1} ight)}^4}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\ \end{matrix}

    Xét phương trình ta có:

    \begin{matrix}  f'\left( x ight) = f''\left( x ight),\left( {x e  - 1} ight) \hfill \\   \Leftrightarrow \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} = \dfrac{{ - 2}}{{{{\left( {x + 1} ight)}^3}}} \hfill \\   \Leftrightarrow x =  - 3 \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Chọn đáp án đúng

    Công thức nào tương ứng với đạo hàm cấp hai của hàm số y = - \frac{1}{x}?

    Ta có: y = - \frac{1}{x} \Rightarrow
y' = \frac{1}{x^{2}}

    \Rightarrow y'' = - \frac{\left(
x^{2} ight)'}{x^{4}} = - \frac{2x}{x^{4}} = -
\frac{2}{x^{3}}

  • Câu 33: Thông hiểu

    Tìm tất cả giá trị của tham số m

    Cho hàm số y =
\log\left( x^{2} - 2x + m + 1 ight) với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho xác định trên tập số thực?

    Để hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi x^{2} - 2x - m +
1 > 0,\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' <
0

    \Leftrightarrow ( - 1)^{2} - 1(m + 1)
< 0 \Leftrightarrow m > 0

  • Câu 34: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Đáp án là:

    Một vật chuyển động theo quy luật s =
s(t) = \frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 10t + 2 (với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt 20\ m/s (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 54,2 m

    Ta có: v(t) = s'(t) = t^{2} - 3t +
10.

    Khi vận tốc của vật đạt 20\ m/s ta có:

    t^{2} - 3t + 10 = 20 \Leftrightarrow
t^{2} - 3t - 10 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 5 \\
t = - 2 \\
\end{matrix} ight..

    t > 0 nên nhận t = 5(s).

    Lúc đó quảng đường vật đi được là: s(5) -
s(0) = \frac{337}{6} - 2 \approx 54,2m

  • Câu 35: Nhận biết

    Tính vận tốc của chất điểm

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 36: Vận dụng cao

    Số giá trị của k thỏa mãn yêu cầu bài toán

    Cho hàm số y = f(x) = x^{3} + 6x^{2} + 9x+ 3 có đồ thị (C). Tồn tại hai tiếp tuyến phân biệt của (C) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?

    Đồ thị (C) có hai tiếp tuyến phân biệt có cùng hệ số góc k.

    => Hệ phương trình (I):\left\{\begin{matrix}y = x^{3} + 6x^{2} + 9x + 3\ \ (1) \\k = 3x^{2} + 12x + 9\ \ \ (2) \\\end{matrix} ight.có hai nghiệm phân biệt

    \begin{matrix}\Rightarrow \Delta'_{(2)} = 6^{2} - 3(9 - k) = 9 + 3k > 0 \\\Rightarrow k > - 3 \\\end{matrix}

    Từ hệ \left\{ \begin{matrix}y = \left( \frac{1}{3}x + \frac{2}{3} ight)\left( 3x^{2} + 12x + 9ight) - 2x - 3 \\k = 3x^{2} + 12x + 9 \\\end{matrix} ight.

    \Rightarrow y = \left( \frac{k}{3} - 2ight)x + \frac{2}{3}k - 3(*)

    Như vậy (*) là phương trình của đường thẳng đi qua tiếp điểm của hai tiếp tuyến cần tìm.

    Khi đó A\left( \frac{- 2k + 9}{k - 6};0ight),B\left( 0;\frac{2k - 9}{3} ight);(k eq 6)

    Theo bài ra ta có:

    OA = 2017.OB

    \Leftrightarrow \left| \frac{2k - 9}{k -6} ight| = 2017.\left| \frac{- 2k + 9}{3} ight|

    \Leftrightarrow \left\lbrack\begin{matrix}k = \dfrac{9}{2} \\k = 6057 \\k = - 6045(ktm) \\\end{matrix} ight.

    Vậy có hai giá trị của k thỏa mãn yêu cầu bài toán.

  • Câu 37: Thông hiểu

    Viết phương trình tiếp tuyến

    Cho hàm số y =
f(x) = \frac{x + 1}{3x} . Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của (C) và đường thẳng y = x + 1 là đường thẳng nào dưới đây?

    Hoành độ giao điểm là nghiệm của phương trình

    \frac{x + 1}{3x} = x + 1 \Leftrightarrow
3x^{2} + 2x - 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \Rightarrow y = 0 \\x = \dfrac{1}{3} \Rightarrow y = \dfrac{4}{3} \\\end{matrix} ight.

    Phương trình tiếp tuyến tại điểm ( -
1;0)

    y = y'( - 1)(x + 1) + 0 \Rightarrow
y = - \frac{1}{3}x - \frac{1}{3}

    Phương trình tiếp tuyến tại điểm \left(
\frac{1}{3};\frac{4}{3} ight)

    y = y'\left( \frac{1}{3}
ight)\left( x - \frac{1}{3} ight) + \frac{4}{3} \Rightarrow y = - 3x
+ \frac{7}{3}

  • Câu 38: Nhận biết

    Chọn khẳng định đúng

    Tính đạo hàm của hàm số y = \log_{2}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y' =\frac{1}{x\ln2}

  • Câu 39: Vận dụng

    Tính và điền đáp án vào chỗ trống

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Đáp án là:

    Cho hàm số y =
f(x) được xác định bởi công thức

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Biết hàm số có đạo hàm tại điểm x_{0} =
2 . Khi đó:

    Giá trị của a là: -4|| - 4

    Giá trị của b là: 2

    Ta có:

    f(x) = \left\{ \begin{matrix}
x^{2} + ax + b\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
x^{3} - x^{2} - 8x + 10\ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    \Rightarrow f'(x) = \left\{
\begin{matrix}
2x + a\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 2 \\
3x^{2} - 2x - 8\ \ \ \ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Hàm số có đạo hàm tại điểm x =
2

    Suy ra 4 + a = 0 \Rightarrow a = -
4

    Mặt khác hàm số có đạo hàm tại điểm x =
2

    Suy ra \lim_{x ightarrow 2^{+}}f(x) =
\lim_{x ightarrow 2^{-}}f(x) = f(2)

    \Rightarrow 4 + 2a + b = - 2 \Rightarrow
b = 2

  • Câu 40: Thông hiểu

    Tính đạo hàm lượng giác

    Tính đạo hàm của hàm số y = \sin \sqrt {{x^2} + 2}

     Ta có:

    \begin{matrix}  y' = \left[ {\sin \sqrt {{x^2} + 2} } ight] \prime \hfill \\   \Rightarrow y' = \left( {\sqrt {{x^2} + 2} } ight)'.\cos \sqrt {{x^2} + 2}  \hfill \\   \Rightarrow y' = \dfrac{x}{{\sqrt {2 + {x^2}} }}.\cos \sqrt {{x^2} + 2}  \hfill \\ \end{matrix}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo