Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 7: Đạo hàm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn đáp án đúng

    Tìm đạo hàm cấp hai của hàm số y = \frac{2}{x + 1}?

    Ta có:

    y = \frac{2}{x + 1} \Rightarrow y' =
\frac{- 2}{(x + 1)^{2}}

    \Rightarrow y'' = \frac{2.2(x +
1)}{(x + 1)^{4}} = \frac{4}{(x + 1)^{3}}

  • Câu 2: Thông hiểu

    Tính số gia của hàm số

    Tính số gia của hàm số y = x^{3} + x^{2}+ 1 tại điểm x0 ứng với số gia \Delta x = 1

    Ta có:

    \Delta y = f\left( x_{0} + \Delta xight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = f\left( x_{0} + 1ight) - f\left( x_{0} ight)

    \Rightarrow \Delta y = \left\lbrack\left( x_{0} + 1 ight)^{3} + \left( x_{0} + 1 ight)^{2} + 1ightbrack - \left( {x_{0}}^{3} + {x_{0}}^{2} + 1ight)

    \Rightarrow \Delta y = 3{x_{0}}^{2} +5x_{0} + 2

  • Câu 3: Nhận biết

    Chọn phát biểu đúng

    Chọn phát biểu đúng trong các phát biểu dưới đây?

    Phát biểu đúng là: “Nếu hàm số y = f(x) có đạo hàm tại m thì nó liên tục tại điểm đó.”

  • Câu 4: Thông hiểu

    Kiểm tra sự đúng sai của các khẳng định

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =\frac{x^{2}}{2} tương ứng với số gia \Delta x của đối số x tại x_{0} =- 1\frac{1}{2}(\Delta x)^{2} -\Delta xĐúng||Sai

    b) Đạo hàm của hàm số y = \frac{x(1 -3x)}{x + 1} bằng biểu thức \frac{3x^{2} - 6x - 1}{(x + 1)^{2}}. Sai||Đúng

    c) Đạo hàm của hàm số f(x) = x^{3} -3x^{2} + 1 âm khi và chỉ khi x \in(0;2). Đúng||Sai

    d) Phương trình tiếp tuyến của đồ thị hàm số f(x) = \cos x - \frac{\sqrt{3}}{2};x \in\left\lbrack 0;\frac{\pi}{4} ightbrack song song với đường thẳng y = - \frac{1}{2}(x + 1)y = \frac{x}{12} + \frac{\pi}{12}. Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) =\frac{x^{2}}{2} tương ứng với số gia \Delta x của đối số x tại x_{0} =- 1\frac{1}{2}(\Delta x)^{2} -\Delta xĐúng||Sai

    b) Đạo hàm của hàm số y = \frac{x(1 -3x)}{x + 1} bằng biểu thức \frac{3x^{2} - 6x - 1}{(x + 1)^{2}}. Sai||Đúng

    c) Đạo hàm của hàm số f(x) = x^{3} -3x^{2} + 1 âm khi và chỉ khi x \in(0;2). Đúng||Sai

    d) Phương trình tiếp tuyến của đồ thị hàm số f(x) = \cos x - \frac{\sqrt{3}}{2};x \in\left\lbrack 0;\frac{\pi}{4} ightbrack song song với đường thẳng y = - \frac{1}{2}(x + 1)y = \frac{x}{12} + \frac{\pi}{12}. Sai||Đúng

    a) Với số gia của đối số x tại x_{0} = -1 ta có:

    \Delta y = \frac{(1 + \Delta x)^{2}}{2}- \frac{1}{2} = \frac{1 + (\Delta x)^{2} + 2\Delta x}{2} -\frac{1}{2}

    = \frac{1}{2}(\Delta x)^{2} + \Deltax

    b) Ta có: y = \frac{- 3x^{2} + x}{x +1}

    \Rightarrow y' = \frac{\left( -3x^{2} + x ight)'(x + 1) - \left( - 3x^{2} + x ight)(x +1)'}{(x + 1)^{2}}

    = \frac{( - 6x + 1)(x + 1) - \left( -3x^{2} + x ight)}{(x + 1)^{2}}

    = \frac{- 6x^{2} - 6x + x + 1 + 3x^{2} -x}{(x + 1)^{2}}

    = \frac{- 3x^{2} - 6x + 1}{(x +1)^{2}}

    c) Ta có: f'(x) = 3x^{2} -6x

    f'(x) < 0 \Rightarrow 3x^{2} - 6x< 0 \Leftrightarrow x \in (0;2).

    d) Ta có:

    f'(x) = - \sin x

    Tiếp tuyến song song với đường thẳng y =- \frac{1}{2}(x + 1)

    \Rightarrow f'\left( x_{0} ight) =- \frac{1}{2} \Rightarrow \sin x = - \frac{1}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in \left\lbrack 0;\frac{\pi}{4}ightbrack \Rightarrow x = \frac{\pi}{6};y = 0 \Rightarrow y = -\frac{x}{2} + \frac{\pi}{12}

  • Câu 5: Nhận biết

    Định nghĩa đạo hàm

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 6: Thông hiểu

    Xác định công thức đạo hàm cấp hai

    Cho hàm số y =
f(x) = \frac{x - 2}{x + 3}. Xác định công thức đạo hàm cấp hai của hàm số đã cho?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y = f(x) = \frac{x - 2}{x +
3}

    \Rightarrow f'(x) = \frac{5}{(x +
3)^{2}}

    \Rightarrow f''(x) = 5.\frac{-
2.(x + 3)}{(x + 3)^{4}} = \frac{- 10}{(x + 3)^{3}}

  • Câu 7: Vận dụng

    Viết phương trình tiếp tuyến của đồ thị (C)

    Cho hàm số y = \frac{2x - 1}{x -
1} có đồ thị là (C). Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox,\ Oy lần lượt tại các điểm A,B thoả mãn OA = 4OB.

    Giả sử tiếp tuyến (d) của (C) tại M(x_{0};y_{0}) \in (C) cắt Ox tại A, Oy tại B sao cho OA
= 4OB.

    Do \Delta OAB vuông tại O nên \tan A
= \frac{OB}{OA} = \frac{1}{4}

    ⇒ Hệ số góc của (d) bằng \frac{1}{4}hoặc - \frac{1}{4}.

    Hệ số góc của (d)y\ '(x_{0}) = - \frac{1}{(x_{0} - 1)^{2}} <0

    \Rightarrow - \frac{1}{(x_{0} - 1)^{2}} = - \frac{1}{4}\Leftrightarrow \left\lbrack\begin{matrix}x_{0} = - 1\ \ \ \left( y_{0} = \dfrac{3}{2} \right) \\x_{0} = 3\ \ \ \left( y_{0} = \dfrac{5}{2} \right)\end{matrix} \right.

    Khi đó có 2 tiếp tuyến thoả mãn là: \left\lbrack \begin{matrix}y = - \dfrac{1}{4}(x + 1) + \dfrac{3}{2} \\y = - \dfrac{1}{4}(x - 3) + \dfrac{5}{2}\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}y = - \dfrac{1}{4}x + \dfrac{5}{4} \\y = - \dfrac{1}{4}x + \dfrac{13}{4}\end{matrix} \right..

  • Câu 8: Nhận biết

    Chọn đáp án chính xác

    Cho hàm số y = f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{a{x^2} - \left( {a - 2} ight)x - 2}}{{\sqrt {x + 3}  - 2}}{\text{   khi }}x > 1 \hfill \\
  8 + {a^2}{\text{                       khi }}x \leqslant 1 \hfill \\ 
\end{gathered}  ight.. Có tất cả bao nhiêu giá trị của tham số a để hàm số liên tục tại điểm x = 1?

    Ta có: \lim_{x ightarrow 1^{-}}f(x) =
f(1) = 8 + a^{2}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{ax^{2} - (a - 2)x - 2}{\sqrt{x + 3} -
2}

    = \lim_{x ightarrow 1^{+}}\dfrac{(x -1)(ax + 2)}{\dfrac{x - 1}{\sqrt{x + 3} + 2}}

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(ax + 2)\left( \sqrt{x + 3} + 2 ight) ightbrack

    = 4a + 8

    Hàm số liên tục tạo x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow 4a + 8 = 8 + a^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 0 \\
a = 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị của a thỏa mãn.

  • Câu 9: Vận dụng cao

    Tính giá trị của biểu thức P

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 3x - 1\ \ \ khi\ x \geq 1 \\ax + b\ \ \ \ \ \ \ \ \ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại x = 1. Tính giá trị của biểu thức P = 2017a + 2018b - 1

    Vì hàm số có đại hàm tại x = 1 nên ta có:

    \lim_{x ightarrow 1^{-}}\frac{f(x) -f(1)}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{f(x) - f(1)}{x -1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}\frac{x^{2} +3x - 1 - 3}{x - 1}

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = \lim_{x ightarrow 1^{+}}(x +4)

    \Leftrightarrow \lim_{x ightarrow1^{-}}\frac{ax + b - 3}{x - 1} = 5

    \Leftrightarrow \left\{ \begin{matrix}a = 5 \\\dfrac{3 - b}{a} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 5 \\b = - 2 \\\end{matrix} ight.

    Vậy P = 2017a + 2018b - 1 =6048

  • Câu 10: Nhận biết

    Điền kết quả vào ô trống

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Đáp án là:

    Đạo hàm cấp hai của hàm số f(x) = x^{3} - x^{2} + 1 tại điểm x = 2 bằng 10

    Ta có: f(x) = x^{3} - x^{2} +
1

    \Rightarrow f'(x) = 3x^{2} -
2x

    \Rightarrow f''(x) = 6x -
2

    \Rightarrow f''(2) = 6.2 - 2 =
10

  • Câu 11: Thông hiểu

    Tìm đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \frac{x + 3}{\sqrt{x^{2} + 1}}?

    Ta có:

    y = \frac{x + 3}{\sqrt{x^{2} + 1}}
\Rightarrow y' = \left( \frac{x + 3}{\sqrt{x^{2} + 1}}
ight)'

    \Rightarrow y' = \dfrac{\sqrt{x^{2} +1} - \dfrac{(x + 3)x}{\sqrt{x^{2} + 1}}}{x^{2} + 1} = \dfrac{1 -3x}{\left( x^{2} + 1 ight)\sqrt{x^{2} + 1}}

  • Câu 12: Vận dụng cao

    Tính giá trị biểu thức

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Đáp án là:

    Cho hai hàm số f(x);g(x) đều có đạo hàm trên tập số thực và thỏa mãn:

    f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0

    với \forall
x\mathbb{\in R} . Giá trị biểu thức M = 3f(2) + 4f'(2) = 10

    Với \forall x\mathbb{\in R} ta có: f^{3}(2 - x) - 2f^{2}(2 + 3x) +
x^{2}.g(x) + 36x = 0\ \ \ (1)

    Đạo hàm hai vế của (1) ta được:

    - 3f^{2}(2 - x).f'(2 - x) - 12f(2 +
3x).f'(2 + 3x)

    + 2x.g(x) + x^{2}.g'(x) + 36x = 0\ \
\ (2)

    Từ (1) và (2) thay x = 0 ta có:

    \left\{ \begin{matrix}
f^{2}(2) - 2f^{2}(2) = 0\ \ \ (3) \\
- 3f^{2}(2).f'(2) - 12f(2).f'(2) + 36 = 0\ \ \ (4) \\
\end{matrix} ight.

    Từ (3) ta có: \left\lbrack \begin{matrix}
f(2) = 0 \\
f(2) = 2 \\
\end{matrix} ight.

    Với f(2) = 0 thay vào (4) ta được 36 = 0

    Với f(2) = 2 thay vào (4) ta được - 36f'(2) + 36 = 0 \Rightarrow
f'(2) = 1

    Vậy M = 3f(2) + 4f'(2) = 3.2 + 4.1 =
10

  • Câu 13: Nhận biết

    Xác định đạo hàm của hàm số

    Tính đạo hàm của hàm số y = f(x) = 2^{2x}?

    Ta có:

    y = f(x) = 2^{2x}

    \Rightarrow f'(x) = \left( 2^{2x}ight)' = (2x)'.2^{2x}.\ln2 = 2^{2x + 1}.\ln2

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Đạo hàm của hàm số y = 6^{x}

    Ta có: \left( a^{x} ight)' =a^{x}.\ln a

    y = 6^{x} \Rightarrow y' =6^{x}.\ln6

  • Câu 15: Thông hiểu

    Tính đạo hàm của hàm số

    Tính đạo hàm của hàm số y = \frac{{{x^2} + 2x + 3}}{{x + 2}}

    Ta có:

    \begin{matrix}  y = x - \dfrac{3}{{x - 2}} \hfill \\   \Rightarrow y' = \left( x ight)' - \left( {\dfrac{3}{{x - 2}}} ight)\prime \hfill \\   = 1 - 3.\dfrac{{ - \left( {x - 2} ight)'}}{{{{\left( {x - 2} ight)}^2}}} \hfill \\   = 1 + \dfrac{3}{{{{\left( {x - 2} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 1}}}&{{\text{ khi }}x > 1} \\   {x - 1}&{{\text{ khi }}x \leqslant 1} \end{array}} ight.. Khẳng định nào sau đây đúng trong các khẳng định sau?

    Ta có:

    f\left( { - 2} ight) =  - 2 - 1 =  - 3

  • Câu 17: Vận dụng

    Điền đáp án vào chỗ trống

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho hàm số y =
f(x) xác định trên tập số thực thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12 . Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8} ?

    Kết quả: 5/24

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Do \lim_{x ightarrow 2}\frac{f(x) -
16}{x - 2} = 12\lim_{x
ightarrow 2}(x - 2) = 0 \Rightarrow \lim_{x ightarrow 2}\left\lbrack
f(x) - 16 ightbrack = 0

    \Rightarrow \lim_{x ightarrow 2}f(x) =
16

    Ta có:

    \lim_{x ightarrow
2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x - 8}

    = \lim_{x ightarrow 2}\frac{5f(x) - 16
- 4^{3}}{(x - 2)(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow
2}\frac{5\left\lbrack f(x) - 16 ightbrack}{(x - 2)(x +
4)\left\lbrack \left( \sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x)
- 16} + 4x^{2} ightbrack}

    = \lim_{x ightarrow 2}\left\{
\frac{f(x) - 16}{(x - 2)}.\frac{5}{(x + 4)\left\lbrack \left(
\sqrt[3]{5f(x) - 16} ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2}
ightbrack} ight\} = T

    \lim_{x ightarrow 2}\frac{f(x) -
16}{(x - 2)} = 12\lim_{x
ightarrow 2}\frac{5}{(x + 4)\left\lbrack \left( \sqrt[3]{5f(x) - 16}
ight)^{2} + 4\sqrt[3]{5f(x) - 16} + 4x^{2} ightbrack} =
\frac{5}{288}

    Nên T = 12.\frac{5}{288} =
\frac{5}{24}

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Tính đạo hàm của hàm số y = (2x - 1)\sqrt{x^{2} + x}?

    Ta có:

    y = (2x - 1)\sqrt{x^{2} +
x}

    \Rightarrow y' = 2\sqrt{x^{2} + x} +
\frac{(2x - 1)(2x + 1)}{2\sqrt{x^{2} + x}}

    = \frac{4x^{3} + 4x + 4x^{2} -
1}{2\sqrt{x^{2} + x}} = \frac{8x^{2} + 4x - 1}{2\sqrt{x^{2} +
x}}

  • Câu 19: Thông hiểu

    Tìm tập nghiệm S của bất phương trình

    Cho hàm số y =
x^{3} - 3x + 2000. Tìm tập nghiệm bất phương trình y' < 0.

    Ta có: y' = 3x^{2} - 3

    y' < 0 \Rightarrow 3x^{2} - 3
< 0 \Leftrightarrow - 1 < x < 1

    \Rightarrow S = ( - 1;1)

  • Câu 20: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số y =
f(x) = \sqrt{1 + 3x - x^{2}}. Khẳng định nào dưới đây đúng?

    Ta có: y = f(x) = \sqrt{1 + 3x -
x^{2}}

    \Rightarrow \left\{ \begin{matrix}y^{2} = 1 + 3x - x^{2} \\y' = \dfrac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} \\\end{matrix} ight.

    Ta có:

    2.y.y'' = 2.\sqrt{1 + 3x -
x^{2}}.\left( \frac{- 2x + 3}{2\sqrt{1 + 3x - x^{2}}} ight) = 3 -
2x

    \Rightarrow 2(y')^{2} +
2y.y'' = - 2

    \Rightarrow (y')^{2} + y.y''
= - 1

  • Câu 21: Thông hiểu

    Tính đạo hàm

    Tính đạo hàm của hàm số y = {x^2}\tan x + \sqrt x

    Ta có:

    \begin{matrix}  y = {x^2}\tan x + \sqrt x  \hfill \\   \Rightarrow y\prime  = \left( {{x^2}} ight)\prime \tan x + {x^2}\left( {\tan x} ight)\prime  + \left( {\sqrt x } ight)\prime  \hfill \\   = 2x.\tan x + \dfrac{{{x^2}}}{{{{\cos }^2}x}} + \dfrac{1}{{2\sqrt x }} \hfill \\ \end{matrix}

  • Câu 22: Vận dụng cao

    Chọn kết luận đúng

    Cho hàm số y = f(x) có đạo hàm tại x = 1. Gọi d_{1}, d_{2} lần lượt là tiếp tuyến của đồ thị hàm số y = f(x)y = g(x) = xf(2x - 1) tại điểm có hoành độ x = 1. Biết rằng hai đường thẳng d_{1}, d_{2} vuông góc với nhau, khẳng định nào sau đây đúng

    Ta có: g'\left( x \right) = f\left( {2x - 1} \right) + 2x.f'\left( {2x - 1} \right)

    \Rightarrow g'(1) = f(1) +
2f'(1).

    d_{1} có hệ số góc là f'(1).

    d_{2} có hệ số góc là g'(1) = f(1) + 2f'(1).

    d_{1}\bot d_{2} \Rightarrow f'(1).g'(1) = - 1

    \Leftrightarrow f'(1).\left\lbrack f'(1) + 2f(1) \right\rbrack = - 1

    \Leftrightarrow f(1) = \frac{-
2\left\lbrack f'(1) \right\rbrack^{2} - 1}{f'(1)} \Rightarrow \left| f(1) \right| = \left|
\frac{2\left\lbrack f'(1) \right\rbrack^{2} + 1}{f'(1)}
\right|.

    Xét hàm số h(t) = \left| \frac{2t^{2} +1} {t} \right|

    Ta có bảng biến thiên như sau:

    Vậy h(t) \geq 2\sqrt{2} \forall t \neq 0 \Rightarrow \left| f(1) \right|
\geq 2\sqrt{2}.

    Cách khác: Xét h(t) = \left| \frac{2t^{2}
+ 1}{t} \right|

    Với t > 0 ta có: \left| \frac{2t^{2} + 1}{t} \right| = \frac{2t^{2}
+ 1}{t} = 2t + \frac{1}{t} \geq 2\sqrt{2t.\frac{1}{t}} =
2\sqrt{2}.

    Với t < 0 ta có: \left| \frac{2t^{2} + 1}{t} \right| = -
\frac{2t^{2} + 1}{t} = ( - 2t) + \left( - \frac{1}{t} \right) \geq
2\sqrt{( - 2t).\left( - \frac{1}{t} \right)} = 2\sqrt{2}.

    Vậy h(t) \geq 2\sqrt{2}\forall t \neq 0
\Rightarrow \left| f(1) \right| \geq 2\sqrt{2}.

  • Câu 23: Vận dụng

    Chọn đáp án chính xác

    Tính đạo hàm cấp hai của hàm số f(x) = \frac{1}{x(2 - 2x)} tại x_{0} = \frac{1}{2}?

    Ta có:

    f(x) = \frac{1}{x(2 - 2x)}

    \Rightarrow f'(x) = \frac{4x -
2}{\left( 2x - 2x^{2} ight)^{2}}

    \Rightarrow f''(x) =
\frac{4\left( 2x - 2x^{2} ight)^{2} - 2( - 4x + 2).\left( - 2x^{2} +
2x ight).(4 - 2x)}{\left( 2x - 2x^{2} ight)^{4}}

    = \frac{4\left( - 2x^{2} + 2x ight) +
2\left( 16x^{2} - 16x + 4 ight)}{\left( 2x - 2x^{2}
ight)^{3}}

    = \frac{- 8x^{2} + 8x + 32x^{2} - 32x +
8}{\left( 2x - 2x^{2} ight)^{3}}

    = \frac{24x^{2} - 24x + 8}{\left( 2x -
2x^{2} ight)^{3}} \Rightarrow f''\left( \frac{1}{2} ight) =
16

  • Câu 24: Vận dụng

    Tính giá trị của biểu thức giới hạn

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{3x + 1} - 2x}{x - 1}\ \ khi\ x eq 1 \\- \dfrac{5}{4}\ \ khi\ x = 1 \\\end{matrix} ight.. Tính f'(1)?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{\sqrt{3x + 1} - 2x}{x - 1}

    = \lim_{x ightarrow 1}\frac{3x + 1 -4x^{2}}{(x - 1)\left( \sqrt{3x + 1} + 2x ight)}

    = \lim_{x ightarrow 1}\frac{- 4x -1}{\left( \sqrt{3x + 1} + 2x ight)} = - \frac{5}{4} =f(1)

    => Hàm số liên tục tại x = 1

    Khi đó ta có:

    f'(1) = \lim_{x ightarrow1}\frac{f(x) - f(1)}{x - 1}

    = \lim_{x ightarrow1}\dfrac{\dfrac{\sqrt{3x + 1} - 2x}{x - 1} + \dfrac{5}{4}}{x -1}

    = \lim_{x ightarrow 1}\frac{4\sqrt{3x+ 1} - 3x - 5}{4(x - 1)^{2}}

    = \lim_{x ightarrow 1}\frac{16(3x + 1)- (3x + 5)^{2}}{4(x - 1)^{2}\left( 4\sqrt{3x + 1} + 3x + 5ight)}

    = \lim_{x ightarrow 1}\frac{-9}{4\left( 4\sqrt{3x + 1} + 3x + 5 ight)} = -\frac{9}{64}

  • Câu 25: Nhận biết

    Chọn đáp án chính xác

    Tính đạo hàm hàm số y = x^{2} - \frac{1}{x}?

    Ta có:

    y = x^{2} - \frac{1}{x} \Rightarrow
y' = \left( x^{2} - \frac{1}{x} ight)'

    \Rightarrow y' = \left( x^{2}
ight)' - \left( \frac{1}{x} ight)'

    \Rightarrow y' = 2x - \left( -
\frac{1}{x^{2}} ight) = 2x + \frac{1}{x^{2}}

  • Câu 26: Thông hiểu

    Tìm vận tốc lớn nhất của chuyển động

    Một vật chuyển động theo quy luật s = -\frac{1}{2}t^{3} + 9t^{2} với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

    Vận tốc tại thời điểm tv(t) = s'(t) = - \frac{3}{2}t^{2} +18t với t \in \lbrack0;10brack.

    Ta có: v'(t) = - 3t + 18 = 0\Leftrightarrow t = 6.

    Suy ra: v(0) = 0;v(10) = 30;v(6) =54.

    Vậy vận tốc lớn nhất của vật đạt được bằng 54\ \ (m/s).

  • Câu 27: Vận dụng cao

    Tính giá trị của biểu thức

    Cho hàm số f(x) = ln2018 + \ln\left(
\frac{x}{x + 1} \right). Tính S =
f'(1) + f'(2) + f'(3) + \cdots + f'(2017).

    Ta có f(x) = ln2018 + \ln\left(
\frac{x}{x + 1} \right)

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Do đó S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} - \frac{1}{2018} = 1 -
\frac{1}{2018} = \frac{2017}{2018}.

  • Câu 28: Nhận biết

    Tính đạo hàm cấp hai tại một điểm

    Cho f(x) = (x +
10)^{6}. Tính f''(2)

    Ta có:

    f(x) = (x + 10)^{6}

    \Rightarrow f'(x) = 6.(x +
10)^{5}

    \Rightarrow f''(x) = 6.5.(x +
10)^{4} = 30.(x + 10)^{4}

    \Rightarrow f''(2) = 30.(2 +
10)^{4} = 622080

  • Câu 29: Nhận biết

    Hàm số f(x) liên tục trên khoảng

    Hàm số f(x)=\sqrt{3-x}+\frac{1}{\sqrt{x+4}} liên tục trên:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {3 - x \geqslant 0} \\   {x + 4 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 3} \\   {x >  - 4} \end{array}} ight. \Rightarrow x \in \left( { - 4;3} ight]

    Vậy hàm số liên tục trên \left( { - 4;3} ight]

  • Câu 30: Nhận biết

    Tính đạo hàm cấp hai của hàm số

    Tại điểm x_{0} =
1, giá trị đạo hàm cấp hai của hàm số y = x^{3} + 2x bằng bao nhiêu?

    Ta có: y = x^{3} + 2x

    \Rightarrow y'(x) = 3x^{2} +
2

    \Rightarrow y''(x) = 6x
\Rightarrow y''(1) = 6.1 = 6

  • Câu 31: Thông hiểu

    Tìm công thức chính xác

    Cho hàm số y =
f(x) = sin^{3}x. Công thức nào sau đây đúng?

    Ta có: y = f(x) = \sin^{3}x

    \Rightarrow f'(x) =3\sin^{2}x.\cos x

    \Rightarrow f''(x) =6\sin x.\cos^{2}x - 3\sin^{3}x

    Khi đó

    y'' + 9y = 6\sin x.\cos^{2}x -3\sin^{3}x + 9\sin^{3}x

    = 6\sin x\left( \sin^{2}x + \cos^{2}xight) = 6\sin x

    \Rightarrow y'' + 9y - 6\sin x =0

  • Câu 32: Nhận biết

    Điền kết quả vào ô trống

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

  • Câu 33: Nhận biết

    Phương trình tiếp tuyến của đồ thị hàm số

    Phương trình tiếp tuyến của đồ thị hàm số  y=-x^{3} tại điểm có hoành độ bằng -1 là:

    Ta có:

    \begin{matrix}  y =  - {x^3} \Rightarrow y\left( { - 1} ight) = 1 \hfill \\   \Rightarrow y' =  - 3{x^2} \Rightarrow y'\left( { - 1} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng -1 là:

    y =  - 3\left( {x + 1} ight) + 1

  • Câu 34: Thông hiểu

    Tính giá trị biểu thức

    Đạo hàm cấp hai của hàm số y = \frac{2x + 1}{x^{2} + x - 2} có dạng y'' = \frac{a}{(x - 1)^{3}} +
\frac{b}{(x + 2)^{3}}. Tính giá trị biểu thức T = a + b.

    Ta có:

    y = \frac{2x + 1}{x^{2} + x - 2} =
\frac{1}{x - 1} + \frac{1}{x + 2}

    \Rightarrow y' = - \frac{1}{(x -
1)^{2}} - \frac{1}{(x + 2)^{2}}

    \Rightarrow y'' = \frac{2}{(x -
1)^{3}} + \frac{2}{(x + 2)^{3}}

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow T = a + b = 4

  • Câu 35: Thông hiểu

    Tính đạo hàm của hàm số

    Xác định đạo hàm của hàm số cho bởi công thức f(x) = \left( - x^{2} + 3x + 7
ight)^{7}?

    Ta có:

    f(x) = \left( - x^{2} + 3x + 7
ight)^{7}

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.\left( - x^{2} + 3x + 7 ight)'

    \Rightarrow f'(x) = 7.\left( - x^{2}
+ 3x + 7 ight)^{6}.( - 2x + 3)

  • Câu 36: Vận dụng

    Viết phương trình tiếp tuyến của (C)

    Phương trình tiếp tuyến của (C):y =
x^{3} biết nó đi qua điểm M(2;\
0) là:

    Ta có : y' = 3x^{2}.

    Gọi A(x_{0};\ y_{0}) là tiếp điểm. PTTT của (C) tại A(x_{0};\ y_{0}) là:

    y = 3x_{0}^{2}\left( x - x_{0} \right) +
x_{0}^{3}\ \ \ \ \ \ \ \ (d).

    Vì tiếp tuyến (d) đí qua M(2;\ 0) nên ta có phương trình:

    3x_{0}^{2}\left( 2 - x_{0} \right) +
x_{0}^{3}\  = 0\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = 3
\end{matrix} \right..

    Với x_{0} = 0thay vào (d) ta có tiếp tuyến y = 0.

    Với x_{0} = 3 thay vào (d) ta có tiếp tuyến y = 27x - 54.

  • Câu 37: Thông hiểu

    Tính tỉ số

    Tính tỉ số \frac{\Delta y}{\Deltax}của hàm số y = 3x +1theo x và \Delta x

    Ta có:

    \Delta y = f(x + \Delta x) -f(x)

    \Delta y = \left\lbrack (x + \Deltax)^{2} - 1 ightbrack - \left( x^{2} - 1 ight)

    \Delta y = 2x\Delta x + (\Deltax)^{2}

  • Câu 38: Nhận biết

    Tính đạo hàm hàm số

    Xác định công thức đạo hàm của hàm số y = \log_{\sqrt{3}}x trên khoảng (0; + \infty)?

    Áp dụng công thức \left( \log_{a}xight)' = \frac{1}{x\ln a}

    Ta có: y = \log_{\sqrt{3}}x

    \Rightarrow y' =
\frac{1}{x\ln\sqrt{3}}

  • Câu 39: Thông hiểu

    Phân tích sự đúng sai của các khẳng định đã cho

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Đạo hàm của hàm số f(x) = x^{4} +
2\sqrt{x} là: f'(x) = 4x^{3} +
\frac{1}{\sqrt{x}} .Đúng||Sai

    b) Công thức đạo hàm của hàm số y =
\sin\left( x^{2018} + 1 ight)y' = - 2018x^{2017}\cos\left( x^{1018} + 1
ight)Sai||Đúng

    c) Tập nghiệm của bất phương trình y' \leq 0 với y = \frac{2x^{2} - 3x}{x - 2} có chứa 2 phần tử là số nguyên. Đúng||Sai

    d) Tiếp tuyến của đồ thị hàm số f(x) =
x^{3} - 2x^{2} - 2 tại điểm x_{0} =
- 2 có phương trình là: y = 20x +
10 . Sai||Đúng

    a) Ta có: f'(x) = \left( x^{4} +
2\sqrt{x} ight)' = \left( x^{4} ight)' + \left( 2\sqrt{x}
ight)'

    = 4x^{3} + 2.\frac{1}{2\sqrt{x}} =
4x^{3} + \frac{1}{\sqrt{x}}

    b) Ta có

    y = \sin\left( x^{2018} + 1
ight)

    \Rightarrow y' = \left( x^{2018} + 1
ight)'.cos\left( x^{2018} + 1 ight)

    \Rightarrow y' =
2018x^{2017}.cos\left( x^{2018} + 1 ight)

    c) Ta có: y = \frac{2x^{2} - 3x}{x -
2}

    \Rightarrow y' = \left( \frac{2x^{2}
- 3x}{x - 2} ight)' = \frac{(4x - 3)(x - 2) - \left( 2x^{2} - 3x
ight)}{(x - 2)^{2}}

    = \frac{4x^{2} - 11x + 6 - 2x^{2} +
3x}{(x - 2)^{2}} = \frac{2x^{2} - 8x + 6}{(x - 2)^{2}}

    Khi đó y' \leq 0 \Leftrightarrow
\frac{2x^{2} - 8x + 6}{(x - 2)^{2}} \leq 0 \Leftrightarrow \left\{
\begin{matrix}
1 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình có chứa 2 giá trị nguyên.

    d) Ta có:

    f(x) = x^{3} - 2x^{2} - 2 \Rightarrow
f'(x) = 3x^{2} - 4x

    Với x_{0} = - 2 \Rightarrow y_{0} = - 18;f'\left( x_{0}
ight) = 20 nên ta có phương trình tiếp tuyến là:

    y = f'\left( x_{0} ight)\left( x -
x_{0} ight) + y_{0}

    \Leftrightarrow y = 20(x + 2) -
18

    \Leftrightarrow y = 20x +
22.

  • Câu 40: Thông hiểu

    Tìm biểu thức đúng

    Cho hàm số y =\sin2x. Khi đó mệnh đề nào dưới đây đúng?

    Ta có:

    y = \sin2x

    \Rightarrow y' =2.\cos2x

    \Rightarrow y'' = -4.\sin2x

    Khi đó khẳng định đúng là: 4y +
y'' = 0

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo