Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định mệnh đề đúng

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 2: Vận dụng

    Tính cosin của góc giữa hai đường thẳng

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SC. Tính cosin góc giữa hai đường thẳng BM và AC.

    Hình vẽ minh họa:

    Tính cosin của góc giữa hai đường thẳng

    Gọi H là tâm của hình vuông ABCD khi đó SH \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {BM}  = \overrightarrow {HM}  - \overrightarrow {HB}  = \dfrac{1}{2}\overrightarrow {HS}  + \dfrac{1}{2}\overrightarrow {HC}  - \overrightarrow {HB}  \hfill \\  \overrightarrow {AC}  = 2\overrightarrow {HC}  \hfill \\  HC \bot HB,HC \bot SH \hfill \\   \Rightarrow \overrightarrow {AC} .\overrightarrow {BM}  = H{C^2} = \dfrac{{A{C^2}}}{4} = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Vì tam giác SBC đều cạnh a và BM là trung tuyến nên BM = \frac{{a\sqrt 3 }}{2}

    Khi đó: \cos \left( {\overrightarrow {AC} ,\overrightarrow {BM} } ight) = \frac{{\overrightarrow {AC} .\overrightarrow {BM} }}{{AC.BM}} = \frac{1}{{\sqrt 6 }} > 0

  • Câu 3: Vận dụng

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 4: Nhận biết

    Tính chiều cao hình chóp

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 5: Vận dụng

    Điền đáp án vào ô trống

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 6: Vận dụng cao

    Tính b theo a.

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a, chiều cao b. Biết góc giữa hai đường thẳng AC’ và A’B bằng 600. Tính b theo a.

    Hình vẽ minh họa:

    Lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, AA’, A’C’, A’B’ suy ra MN, NP, PQ và MQ lần lượt là đường trung bình của tam giác ABA’, AA’C’, A’B’C’ và hình chữ nhật ABB’A’. Suy ra:

    \left\{ \begin{matrix}MN// = \dfrac{1}{2}A'B \\NP// = \dfrac{1}{2}AC' \\PQ = \dfrac{1}{2}B'C' = \dfrac{a}{2} \\MQ// = BB' \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}MN = NP \\(AC';A'B) = \widehat{MNP} = 60^{0} \\\end{matrix} ight.

    Từ đó suy ra: tam giác MNP đều

    => MP = MN = \frac{a\sqrt{2}}{2}

    Kết hợp với BB'\bot(A'B'C)
\Rightarrow MQ\bot(A'B'C') \Rightarrow MQ\bot
PQ

    => Tam giác MNP vuông tại Q

    => MQ^{2} = MP^{2} - PQ^{2} =
\frac{a^{2}}{4} \Rightarrow MQ = \frac{a}{2}

    =>b = \frac{a}{2}

  • Câu 7: Thông hiểu

    Xác định khẳng định sai?

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Vì HA = HB, tam giác ABC cân => CH ⊥ AB

    Ta có: SA ⊥ (ABC) => SA ⊥ CH

    Mà CH ⊥ AB => CH ⊥ (SAB)

    Mặt khác AK thuộc mặt phẳng (SAB

    => CH ⊥ SA, CH ⊥ SB, CH ⊥ AK

    Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 8: Nhận biết

    Tìm tất cả các mặt phẳng thỏa mãn điều kiện

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 9: Vận dụng

    Tính diện tích thiết diện

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 10: Thông hiểu

    Góc giữa AO và CD bằng bao nhiêu?

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AO và CD bằng bao nhiêu?

    Hình vẽ minh họa

    Góc giữa AO và CD bằng bao nhiêu?

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM ⊥ CD, OM ⊥ CD

    Ta có:

    \begin{matrix}  \overrightarrow {CD} .\overrightarrow {AO}  = \overrightarrow {CD} .\left( {\overrightarrow {AM}  + \overrightarrow {MO} } ight) \hfill \\   = \overrightarrow {CD} .\overrightarrow {AM}  + \overrightarrow {CD} .\overrightarrow {MO}  = \overrightarrow 0  \hfill \\ \end{matrix}

    => \overrightarrow {CD}  \bot \overrightarrow {AO} nên số đo góc giữa AO và CD là 900

  • Câu 11: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, các cạnh AB = AC = a, các góc \widehat{SBA} = \widehat{SCA} = 90^{0}. Gọi H là hình chiếu vuông góc của S trên (ABC)SH =
a\sqrt{2}. Tính cosin góc giữa hai mặt phẳng (SAB)(SAC).

    Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Gọi (\alpha) là mặt phẳng qua B và vuông góc với AB \Rightarrow (\alpha) \cap (ABC) =
Bt//AC.

    Gọi (\beta) là mặt phẳng qua C và vuông góc với AC

    \Rightarrow (\beta) \cap (ABC) =Ct'//AB

    Khi đó, (\alpha) \cap (\beta) =
SH với H = Bt \cap Ct' là đỉnh thứ tư của hình vuông ABHC.

    Khi đó: \Delta SAB,\ \ \Delta
SAC là hai tam giác vuông bằng nhau có SB = SC = a\sqrt{3},SA = 2a.

    Gọi I là chân đường cao hạ từ đỉnh B của tam giác SAB, ta có BI\bot SA,CI\bot SA.

    Vậy góc giữa hai mặt phẳng (SAB)(SAC)(IB;IC).

    Xét \Delta IBC cân tại IIB = IC
= \frac{a\sqrt{3}.a}{2a} = \frac{a\sqrt{3}}{2},BC =
a\sqrt{2}.

    Ta có: \cos\widehat{BIC} = \frac{IB^{2} +IC^{2} - BC^{2}}{2IB.IC}= \dfrac{\dfrac{3a^{2}}{4} + \dfrac{3a^{2}}{4} -2a^{2}}{2.\dfrac{3a^{2}}{4}} = - \dfrac{1}{3}.

    Vậy cosin góc giữa hai mặt phẳng (SAB)(SAC) bằng \frac{1}{3}.

  • Câu 12: Thông hiểu

    Chọn đáp án chính xác

    Tính thể tích khối lăng trụ trong hình vẽ sau, biết AB = a;AA' = 2a.

    Quan sát hình vẽ ta thấy

    Tam giác ABC đều có cạnh bằng a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Do khối lăng trụ ABC.A'B'C' là lăng trụ đứng nên đường cao của lăng trụ là AA' =
2a

    Thể tích khối lăng trụ là V =
AA'.S_{ABCD} = 2a.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}\sqrt{3}}{2}

  • Câu 13: Thông hiểu

    Tính góc giữa hai đường thẳng

    Cho hình lăng trụ đứng ABC.A'B'C' có đáy là các tam giác đều cạnh bằng \sqrt{3} và cạnh bên bằng 1. Tính góc giữa hai đường thẳng BB'AC'?

    Hình vẽ minh họa

    Ta có:

    BB'//CC' \Rightarrow
(BB';AC') = (CC';AC') = \widehat{AC'C}

    Khi đó tam giác ACC' vuông cân tại C nên \tan\widehat{AC'C} =
\frac{AC}{CC'} = \frac{\sqrt{3}}{1} = \sqrt{3}

    \Rightarrow \widehat{AC'C} =
60^{0}

    \Rightarrow (BB';AC') =
\widehat{AC'C} = 60^{0}

  • Câu 14: Nhận biết

    Mệnh đề nào là mệnh đề sai

    Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?

    "Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).

  • Câu 15: Thông hiểu

    Tính khoảng cách giữa SB và DC

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 16: Thông hiểu

    Tính góc giữa đường thẳng và mặt phẳng

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{3}, SA\bot(ABCD);SA = a\sqrt{2}. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD)?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AC là hình chiếu của SC trên mặt phẳng (ABCD)

    Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc \widehat{SCA}

    Đáy ABCD là hình vuông cạnh a\sqrt{3} \Rightarrow AC =
a\sqrt{6}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a\sqrt{2}}{a\sqrt{6}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 17: Nhận biết

    Tính góc giữa hai đường thẳng

    Cho hình lập phương ABCD.A'B'C'D'. Tính (AB;A'C')?

    Hình vẽ minh họa

    AB//A'B' \Rightarrow
(AB;A'C') = (A'B';A'C') =
\widehat{B'A'C'}

    Tam giác A’B’C’ vuông cân tại B’ \Rightarrow \widehat{B'A'C'} =
45^{0}

    Vậy (AB;A'C') =
45^{0}.

  • Câu 18: Vận dụng

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 19: Thông hiểu

    Xác định thể tích khối chóp tứ giác

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 20: Nhận biết

    Chọn khẳng định đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo