Xác định mệnh đề đúng
Chọn mệnh đề đúng?
Mệnh đề đúng: “Cho đường thẳng , mọi mặt phẳng
thì
”.
Minh họa bằng hình vẽ:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 8: Quan hệ vuông góc trong không gian. Phép chiếu vuông góc nha!
Xác định mệnh đề đúng
Chọn mệnh đề đúng?
Mệnh đề đúng: “Cho đường thẳng , mọi mặt phẳng
thì
”.
Minh họa bằng hình vẽ:
Tính cosin của góc giữa hai đường thẳng
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SC. Tính cosin góc giữa hai đường thẳng BM và AC.
Hình vẽ minh họa:

Gọi H là tâm của hình vuông ABCD khi đó
Ta có:
Vì tam giác SBC đều cạnh a và BM là trung tuyến nên
Khi đó:
Tính khoảng cách d từ A đến mặt phẳng (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Tính chiều cao hình chóp
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Điền đáp án vào ô trống
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Tính b theo a.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a, chiều cao b. Biết góc giữa hai đường thẳng AC’ và A’B bằng 600. Tính b theo a.
Hình vẽ minh họa:
Lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, AA’, A’C’, A’B’ suy ra MN, NP, PQ và MQ lần lượt là đường trung bình của tam giác ABA’, AA’C’, A’B’C’ và hình chữ nhật ABB’A’. Suy ra:
Từ đó suy ra: tam giác MNP đều
=> MP = MN =
Kết hợp với
=> Tam giác MNP vuông tại Q
=>
=>
Xác định khẳng định sai?
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Xác định khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
Vì HA = HB, tam giác ABC cân => CH ⊥ AB
Ta có: SA ⊥ (ABC) => SA ⊥ CH
Mà CH ⊥ AB => CH ⊥ (SAB)
Mặt khác AK thuộc mặt phẳng (SAB
=> CH ⊥ SA, CH ⊥ SB, CH ⊥ AK
Và AK ⊥ SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Tìm tất cả các mặt phẳng thỏa mãn điều kiện
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Tính diện tích thiết diện
Cho hình lập phương
có cạnh bằng
. Cắt hình lập phương bởi mặt phẳng trung trực của
. Diện tích thiết diện tạo thành bằng:
Hình vẽ minh họa
Gọi là trung điểm của
. Ta có:
nên
thuộc mặt phẳng trung trực của
.
Gọi lần lượt là trung điểm của
Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của
Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của là hình lục giác đều
có cạnh bằng
.
Vậy diện tích thiết diện là:
Góc giữa AO và CD bằng bao nhiêu?
Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AO và CD bằng bao nhiêu?
Hình vẽ minh họa

Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên AM ⊥ CD, OM ⊥ CD
Ta có:
=> nên số đo góc giữa AO và CD là 900
Ghi đáp án vào ô trống
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Chọn đáp án chính xác
Tính thể tích khối lăng trụ trong hình vẽ sau, biết
.

Quan sát hình vẽ ta thấy
Tam giác đều có cạnh bằng a nên
Do khối lăng trụ là lăng trụ đứng nên đường cao của lăng trụ là
Thể tích khối lăng trụ là
Tính góc giữa hai đường thẳng
Cho hình lăng trụ đứng
có đáy là các tam giác đều cạnh bằng
và cạnh bên bằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Khi đó tam giác vuông cân tại C nên
Mệnh đề nào là mệnh đề sai
Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?
"Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).
Tính khoảng cách giữa SB và DC
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,
. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Hình vẽ minh họa:
Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.
Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD =
Tính góc giữa đường thẳng và mặt phẳng
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Tính góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC trên mặt phẳng (ABCD)
Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc
Đáy là hình vuông cạnh
Tính góc giữa hai đường thẳng
Cho hình lập phương
. Tính
?
Hình vẽ minh họa
Vì
Tam giác A’B’C’ vuông cân tại B’
Vậy .
Tính tan của góc giữa SA và mặt phẳng (SBM)
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Xác định thể tích khối chóp tứ giác
Cho khối chóp
có
; đáy
là hình chữ nhật
. Tính thể tích khối chóp
, biết mặt phẳng
tạo với mặt phẳng đáy một góc bằng
.
Hình vẽ minh họa
Ta có:
Vì
Vậy
Xét tam giác vuông SAB có
Vậy
Chọn khẳng định đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: