Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 6: Hàm số mũ và hàm số lôgarit nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính giá trị biểu thức A

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Trong các phương trình sau đây, phương trình nào nhận a = 2 làm nghiệm?

    Thay a = 2 vào các phương trình ta được:

    4^{2} = 16 (tm)

    Vậy x = 2 là nghiệm của phương trình 4^{a} = 16.

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số

    Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số y =
x^{\frac{1}{5}}?

    Ta có tập xác định hàm số y =
x^{\frac{1}{5}}(0; +
\infty).

    Hàm số y = x^{\pi}cũng có tập xác định là (0; + \infty).

    Hàm số y = \frac{1}{\sqrt[5]{x}} có tập xác định là \mathbb{R}\backslash\left\{ 0
ight\}.

    Hàm số y = \sqrt{x} có tập xác định là \lbrack 0; + \infty).

    Hàm số y = \sqrt[3]{x} có tập xác định là \mathbb{R}.

  • Câu 4: Thông hiểu

    Tính giá trị biểu thức

    Biết \log_{m^{2}}\left( \frac{m^{3}}{\sqrt[5]{n^{3}}}ight) = 3 với m,n > 0;m eq
1. Hỏi giá trị của biểu thức \log_{m}n bằng bao nhiêu?

    Ta có:

    \log_{m^{2}}\left(\frac{m^{3}}{\sqrt[5]{n^{3}}} ight) = 3

    \Leftrightarrow \frac{1}{2}\left(\log_{m}m^{3} - \log_{m}n^{\frac{3}{5}} ight) = 3

    \Leftrightarrow 3 - \frac{3}{5}\log_{m}n= 6

    \Leftrightarrow \log_{m}n = -5

  • Câu 5: Nhận biết

    Chọn khẳng đính đúng

    Cho biểu thức F =2^{x}.2^{y};\left( x;y\in \mathbb{R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    F = 2^{x}.2^{y} = 2^{x + y}

  • Câu 6: Thông hiểu

    Chọn khẳng định đúng

    Cho x là số thực dương. Biết rằng \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
x^{\frac{m}{n}} với m,n là các số tự nhiên và \frac{m}{n} là phân số tối giản. Chọn khẳng định đúng?

    Ta có:

    \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x.x^{\frac{1}{3}}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x^{\frac{4}{3}}}}}

    = \sqrt{x\sqrt[3]{x.x^{\frac{2}{3}}}} =
\sqrt{x\sqrt[3]{x^{\frac{5}{3}}}} = \sqrt{x.x^{\frac{5}{9}}} =
\sqrt{x^{\frac{14}{9}}} = x^{\frac{7}{9}}

    \Rightarrow m = 7,n = 9 \Rightarrow m +
n = 16

  • Câu 7: Vận dụng

    Tìm các giá trị nguyên của m

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 8: Thông hiểu

    Giải bất phương trình

    Tập nghiệm của bất phương trình \log_{3}\left( 31 - x^{2} ight) \geq 3 là:

    Điều kiện: 31 - x^{2} > 0
\Leftrightarrow x \in \left( - \sqrt{31};\sqrt{31}
ight)(*)

    Ta có:

    \log_{3}\left( 31 - x^{2} ight) \geq 3\Leftrightarrow 31 - x^{2} \geq 27 \Leftrightarrow - 2 \leq x \leq2

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
2;2brack.

  • Câu 9: Vận dụng

    Rút gọn biểu thức H

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 10: Thông hiểu

    Tính giá trị biểu thức K

    Tính giá trị biểu thức K = \frac{6^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1
+ \sqrt{5}}}.

    Ta có:

    K = \frac{6^{3 + \sqrt{5}}}{2^{2 +
\sqrt{5}}.3^{1 + \sqrt{5}}} = \frac{2^{3 + \sqrt{5}}.3^{3 +
\sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1 + \sqrt{5}}} = 2.3^{2} =
18

  • Câu 11: Vận dụng

    Chọn kết luận đúng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = \log_{t}x là hàm số đồng biến nên t > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = m^{x} là hàm nghịch biến nên 0 < m < 1

    Vậy ta có: 0 < m < n,t <1

    Xét hàm số y =\log_{t}x ta có log_{t}2 = 1 \Rightarrow t <2

    Xét hàm số y = n^{x} ta có n^{1} > 2 \Rightarrow n > 2

    Vậy m < t < n.

  • Câu 12: Nhận biết

    Ghi đáp án vào ô trống

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Đáp án là:

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Ta có:

    3^{x^{2} - 4x + 5} = 9 \Leftrightarrow
3^{x^{2} - 4x + 5} = 3^{2}

    \Leftrightarrow x^{2} - 4x + 5 = 2
\Leftrightarrow x^{2} - 4x + 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = 1 \\
x_{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow {x_{1}}^{2} + {x_{2}}^{2} =
10

    Vậy giá trị cần tìm bằng 10

  • Câu 13: Nhận biết

    Xác định hàm số mũ

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 14: Thông hiểu

    Tìm hàm số thỏa mãn hình vẽ

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 15: Thông hiểu

    Biến đổi biểu thức P

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 16: Thông hiểu

    Tính giá trị biểu thức

    Biết \log_{2}3 =a;\log_{2}5 = b khi đó \log_{15}8 có giá trị là:

    Ta có:

    \log_{15}8 = \log_{15}2^{3} =3\log_{15}2

    = \frac{3}{\log_{2}15} =\frac{3}{\log_{2}3 + \log_{2}5}

    = \frac{3}{a + b}

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Kết luận nào đúng khi biểu diễn tập xác định của hàm số y = \log\left( x^{4}
ight)?

    Điều kiện xác định của hàm số y =
\log\left( x^{4} ight) là:

    x^{4} > 0 \Rightarrow x eq
0

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 0 ight\}

  • Câu 18: Nhận biết

    Tìm hàm số nghịch biến trên tập xác định

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 19: Thông hiểu

    Phân tích sự đúng sai của các mệnh đề

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    a) Ta có: \left( \sqrt{16} ight)^{6} =
16^{3};\left( \sqrt[3]{60} ight)^{6} = 60^{2}

    \Rightarrow \sqrt{16} >
\sqrt[3]{60} mà cơ số 0,2 <
1

    (0,2)^{\sqrt{16}} <
(0,2)^{\sqrt[3]{60}}

    b) Điều kiện xác định: - 3x^{2} + 23x -
20 > 0 \Leftrightarrow 1 < x < \frac{20}{3}

    Vậy tập xác định có 5 giá trị nguyên.

    c) Điều kiện xác định: x > - 2;x eq
5

    \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0

    \Leftrightarrow \log_{2}(x + 2) +\log_{2}|x - 5| - \log_{2}8 = 0

    \Leftrightarrow \log_{2}\left\lbrack (x +2).|x - 5| ightbrack = \log_{2}8

    \Leftrightarrow (x + 2).|x - 5| = 8
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 5 \\
(x + 2).(x - 5) = 8 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
- 2 < x < 5 \\
(x + 2).(x - 5) = - 8 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 6 \\x = \dfrac{3 \pm \sqrt{17}}{2} \\\end{matrix} ight.\ (tm)

    Vậy tổng tất cả các nghiệm của phương trình là: S = 9

    d) Ta có:

    16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}

    \Leftrightarrow 4^{2x} + 5^{2x} + 6^{2x}
\leq 4^{x}.5^{x} + 4^{x}.6^{x} + 5^{x}.6^{x}

    \Leftrightarrow 2\left\lbrack 4^{2x} +
5^{2x} + 6^{2x} ightbrack - 2\left( 4^{x}.5^{x} + 4^{x}.6^{x} +
5^{x}.6^{x} ight) \leq 0

    \Leftrightarrow \left( 4^{x} - 5^{x}
ight)^{2} + \left( 4^{x} - 6^{x} ight)^{2} + \left( 5^{x} - 6^{x}
ight)^{2} \leq 0

    \Leftrightarrow \left\lbrack\begin{matrix}4^{x} - 5^{x} = 0 \\4^{x} - 6^{x} = 0 \\5^{x} - 6^{x} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\left( \dfrac{4}{5} ight)^{x} = 1 \\\left( \dfrac{4}{6} ight)^{x} = 1 \\\left( \dfrac{5}{6} ight)^{x} = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 0 \in \lbrack0;2020brack

    Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Đơn giản biểu thức N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >
0) ta được N =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    N =
\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =
\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{\frac{-
2}{7}}}

    = \frac{a^{\frac{5}{3} +
\frac{7}{3}}}{a^{4 - \frac{2}{7}}} = \frac{a^{4}}{a^{\frac{26}{7}}} =
a^{4 - \frac{26}{7}} = a^{\frac{2}{7}}

    \Rightarrow \frac{m}{n} = \frac{2}{7}
\Rightarrow 2m^{2} + n = 15

  • Câu 21: Vận dụng cao

    Tính tổng của a và b

    Giả sử a,b là các số thực sao cho x^{3} + y^{3} = a.10^{3z} + b.10^{2z} đúng với mọi các số dương x,y,z thỏa mãn \log(x + y) = z\log\left( x^{2} + y^{2} ight) = z + 1. Tính giá trị của a + b bằng:

    Ta có: \left\{ \begin{matrix}
\log(x + y) = z \\
\log\left( x^{2} + y^{2} ight) = z + 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x + y = 10^{z} \\
x^{2} + y^{2} = 10^{z + 1} \\
\end{matrix} ight.

    \Rightarrow xy = \frac{10^{2x} -
10.10^{z}}{2}

    Khi đó:

    x^{3} + y^{3} = (x + y)\left( x^{2} +
y^{2} - xy ight)

    = 10^{z}\left( 10.10^{z} - \frac{10^{2x}
- 10.10^{z}}{2} ight)

    = 15.10^{2z} -
\frac{1}{2}.10^{3z}

    Vậy a = 15;b = - \frac{1}{2} \Rightarrow
a + b = \frac{29}{2}

  • Câu 22: Thông hiểu

    Tìm tập xác định của hàm số

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 23: Vận dụng

    Tính giá trị biểu thức

    Hai số thực dương m,n thỏa mãn m > n > 1\dfrac{1}{\log_{n}m} + \dfrac{1}{\log_{m}n} =\sqrt{2022}. Hãy xác định giá trị biểu thức \dfrac{1}{\log_{mn}n} -\dfrac{1}{\log_{mn}m}?

    Ta có: \dfrac{1}{\log_{n}m} +\dfrac{1}{\log_{m}n} = \sqrt{2022}

    \Leftrightarrow \log_{m}n + \log_{n}m =\sqrt{2022}(*)

    Lại có:

    \frac{1}{\log_{mn}n} -\frac{1}{\log_{mn}m}

    = \log_{n}(mn) - \log_{m}(mn)

    = \log_{m}n - \log_{n}m

    Đặt t = \log_{m}n khi đó (*) trở thành:

    t + \frac{1}{t} = \sqrt{2022}
\Leftrightarrow t^{2} - t.\sqrt{2022} + 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{\sqrt{2022} + \sqrt{2018}}{2} \\t = \dfrac{\sqrt{2022} - \sqrt{2018}}{2} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}P = \dfrac{1}{t} - t = - \sqrt{2018} \\P = \dfrac{1}{t} - t = \sqrt{2018} \\\end{matrix} ight.

    Với m > n > 1 \Leftrightarrow 0
< log_{m}n < 1

    \Rightarrow 0 < t < 1 \Rightarrow
\frac{1}{t} > 1 \Rightarrow P > 0 \Rightarrow P =
\sqrt{2018}

  • Câu 24: Vận dụng

    Chọn kết luận đúng

    Nếu {a^{\dfrac{{2017}}{{2018}}}} < {a^{\dfrac{{2018}}{{2017}}}} và \left(
\sqrt{2018} - \sqrt{2017} ight)^{b} > \sqrt{2018} +
\sqrt{2017} thì:

    Ta có:

    {a^{\dfrac{{2017}}{{2018}}}} < {a^{\dfrac{{2018}}{{2017}}}} nên a >
1 (do \frac{2017}{2018} <
\frac{2018}{2017})

    Ta có:

    \left( \sqrt{2018} - \sqrt{2017}
ight)^{b} > \sqrt{2018} + \sqrt{2017}

    \Leftrightarrow \left( \sqrt{2018} -
\sqrt{2017} ight)^{b} > \left( \sqrt{2018} - \sqrt{2017} ight)^{-
1}

    \Leftrightarrow b < - 1 (vì \sqrt{2018} - \sqrt{2017} <
1)

  • Câu 25: Nhận biết

    Tìm khẳng định đúng

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

    Xét tính đúng sai của từng đáp án như sau

    Ta có \log_{a}b < \log_{a}1 = 0 (vì 0 < a < 1;b > 1) => \log_{a}b < 0 => Đáp án \log_{a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln
b

    => Đáp án \ln a > \ln b sai

    \left\{ \begin{matrix}
0 < 0,5 < 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow (0,5)^{a} > (0,5)^{b} => Đáp án (0,5)^{a} <
(0,5)^{b} Sai

    Ta có: \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight.\  \Rightarrow 2^{a} < 2^{b}=> Đáp án 2^{a} > 2^{b} sai.

  • Câu 26: Thông hiểu

    Chọn kết luận đúng

    Nếu x,y là hai số thực dương bất kì thỏa mãn 4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y thì khẳng định nào dưới đây đúng?

    Ta có:

    4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y

    \Leftrightarrow (2\ln x - 3\ln y)^{2} =0

    \Leftrightarrow 2\ln x - 3\ln y =0

    \Leftrightarrow x^{2} =
y^{3}

  • Câu 27: Nhận biết

    Tính giá trị của biểu thức

    Tính giá trị của biểu thức B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150.

    Ta có:

    B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150

    B = \log_{2}12^{2}.5^{3} - \log_{2}15.150= \log_{2}\frac{18000}{2250} = \log_{2}8 = 3

  • Câu 28: Vận dụng cao

    Tìm tất cả các tập giá trị của a

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 29: Nhận biết

    Biến đổi biểu thức F

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 30: Nhận biết

    Chọn đáp án đúng

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 31: Nhận biết

    Xác định nghiệm của phương trình

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 32: Vận dụng

    Tìm m để bất phương trình vô nghiệm

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 33: Nhận biết

    Tìm nghiệm của bất phương trình

    Giải bất phương trình 0,6^{x} > 3 được tập nghiệm là:

    Ta có:

    0,6^{x} > 3 \Leftrightarrow x <
log_{0,6}3

    Vậy tập nghiệm của bất phương trình là x\in \left( - \infty;\log_{0,6}3 ight)

  • Câu 34: Thông hiểu

    Xác định x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 35: Nhận biết

    Biến đổi biểu thức

    Với a và b là hai số thực dương tùy ý, giá trị \ln\frac{a^{4}e}{b} bằng:

    Ta có:

    \ln\frac{a^{4}e}{b} = \ln a^{4} + \ln e- \ln b = 4\ln a + 1 - \ln b

  • Câu 36: Thông hiểu

    Biểu diễn m theo a, b, c

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

  • Câu 37: Thông hiểu

    Tìm nghiệm nguyên của bất phương trình

    Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình 6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}?

    Ta có:

    6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}

    \Leftrightarrow 6^{x} + 4 - 2^{x + 1} -
2.3^{x} \leq 0

    \Leftrightarrow 2^{x}\left( 3^{x} - 2
ight) + 2\left( 2 - 3^{x} ight) \leq 0

    \Leftrightarrow \left( 2^{x} - 2
ight)\left( 3^{x} - 2 ight) \leq 0

    \Leftrightarrow x \in \left\lbrack\log_{2}2;1 ightbrack

    x\mathbb{\in Z}

    Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 38: Nhận biết

    Tính giá trị biểu thức M

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 39: Thông hiểu

    Tìm tổng tất cả các nghiệm phương trình

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 40: Thông hiểu

    Tính tổng S

    Giả sử tập nghiệm của bất phương trình \log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 -x) có dạng S = (a,b) \cup
(c;d) với a,b,c,d\in\mathbb{R}. Tính tổng S = a + b + c +
d.

    Ta có:

    \left\{ \begin{matrix}x + 1 > 0 \\2 - x > 0 \\\log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 - x) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x >  - 1 \hfill \\
  x < 2 \hfill \\
   - {\log _3}\left( {x + 1} ight) > 2{\log _3}\left( {2 - x} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 1 < x < 2 \hfill \\
  0 > 2{\log _3}\left( {2 - x} ight) + {\log _3}\left( {x + 1} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 1 < x < 2} \\ 
  {{x^2} + x + 1 > 0} 
\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  { - 1 < x < 2} \\ 
  {\left[ {\begin{array}{*{20}{l}}
  {x > \dfrac{{1 + \sqrt 5 }}{2}} \\ 
  {x < \dfrac{{1 - \sqrt 5 }}{2}} 
\end{array}} ight.} 
\end{array}} ight.} ight.

    \Rightarrow S = \left( - 1;\frac{1 -
\sqrt{5}}{2} ight) \cup \left( \frac{1 + \sqrt{5}}{2};2
ight)

    \Leftrightarrow a + b + c + d = - 1 +
\frac{1 - \sqrt{5}}{2} + \frac{1 + \sqrt{5}}{2} + 2 = 2

    Vậy S = 2

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo