Xác suất để mặt 6 chấm xuất hiện
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 5: Một số yếu tố thống kê và xác suất nha!
Xác suất để mặt 6 chấm xuất hiện
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Tính số tam giác tù được tạo thành
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Kiểm tra tính đúng sai của các phát biểu
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Chọn đáp án đúng
Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Đáp án đúng là:
Tính số các số tự nhiên có 4 chữ số khác nhau
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số
Tính xác suất của biến cố
Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?
Quy ước gene A: quả tròn và gene a: quả dài
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1
Gọi là biến cố cây được chọn lần thứ nhất là quả tròn
là biến cố cây được chọn lần thứ hai là quả tròn.
Ta có: độc lập và
Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:
Tìm khoảng chứa tứ phân vị thứ ba
Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Ta có:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) | Tổng |
Tần số | 8 | 12 | 22 | 17 | N = 59 |
Tần số tích lũy | 8 | 20 | 42 | 59 |
|
Ta có:
Vậy nhóm chứa tứ phân vị thứ ba là:
Xác định mô tả chính xác của biến cố
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?
Ta có: là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có: với
và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.
Chọn công thức chính xác
Độ dài nhóm số liệu ghép nhóm
là:
Độ dài của nhóm số liệu ghép nhóm là
.
Tính xác suất lấy được 3 viên bi đủ 3 màu
Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ
Số phần tử không gian mẫu là:
B là biến cố "lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ"
=>
=> Xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là:
Chọn khẳng định đúng
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Số các số có 6 chữ số thỏa mãn điều kiện được tạo thành là
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Chọn đáp án đúng
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm, mỗi câu trả lời sai bị trừ 0,1 điểm. Một học sinh đã tô câu trả lời ngẫu nhiên cho cả 50 câu hỏi. Hỏi xác suất để học sinh đó đạt 4 điểm trong bài thi trên là bao nhiêu?
Để đạt được điểm 4 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.
Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75
Vậy xác suất để học sinh đạt 4 điểm là: .
Chọn đáp án đúng
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?
Chuyển mẫu dữ liệu sang dạng ghép nhóm:
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là:
Tìm trung vị của mẫu số liệu
Tìm trung vị của mẫu số liệu ghép nhóm sau đây:
Thời gian (s) | Số vận động viên (người) |
(50,5; 55,5] | 2 |
(55,5; 60,5] | 7 |
(60,5; 65,5] | 8 |
(65,5; 70,5] | 4 |
Ta có:
Thời gian (s) | Số vận động viên (người) | Tần số tích lũy |
(50,5; 55,5] | 2 | 2 |
(55,5; 60,5] | 7 | 9 |
(60,5; 65,5] | 8 | 17 |
(65,5; 70,5] | 4 | 21 |
Tổng | N = 21 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Tìm nhóm chứa tứ phân vị thứ ba
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Số cách sắp xếp 6 người ngồi xung quanh một bàn tròn
Có bao nhiêu cách xếp 6 người ngồi xung quanh một bàn tròn có 6 chỗ, hai cách ngồi được coi là như nhau nếu có thể nhận được từ cách kia bằng cách quay bàn đi một góc nào đó?
Vì bàn tròn ghế không có sắp xếp thứ tự.
Ta chọn một người ngồi ở một vị trí trong 6 chỗ làm mốc.
Xếp 5 người còn lại vào 5 vị trí trống còn lại ta được 5! = 120 cách
Vậy ta có: 1 . 120 = 120 cách để sắp xếp 6 người ngồi vào bàn tròn 6 chỗ
Tìm biến cố đối của biến cố D
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Tính độ dài nhóm dữ liệu
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?
Độ dài các nhóm là 5.
Điền dữ liệu còn thiếu trong bảng
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng như sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 12 | |
[154; 158) | 18 | |
[158; 162) | 30 | |
[162; 166) | 24 | |
[166; 170) | 10 |
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: