Tính số trung bình của mẫu số liệu
Cho dãy số liệu thống kê:
,
,
,
,
,
. Số trung bình cộng của dãy số liệu thống kê đã cho là
Số trung bình là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 5: Một số yếu tố thống kê và xác suất nha!
Tính số trung bình của mẫu số liệu
Cho dãy số liệu thống kê:
,
,
,
,
,
. Số trung bình cộng của dãy số liệu thống kê đã cho là
Số trung bình là:
Tính xác suất của biến cố
Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:
Số phần tử không gian mẫu là 3! = 6
Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.
Ta xét các trường hợp sau:
Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.
Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách
Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.
Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.
Cả ba lá thư đều bỏ đúng có duy nhất 1 cách
=> n(A) = 4
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Tìm mốt của mẫu số liệu
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây. Tìm mốt.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
N = 30 |
Mốt của mẫu dữ liệu thuộc nhóm dữ liệu: (130; 135]
Chiều cao (cm) | Số học sinh |
|
(120; 125] | 3 |
|
(125; 130] | 5 | |
(130; 135] | 11 | |
(135; 140] | 6 | |
(140; 145] | 5 |
|
N = 30 |
|
Khi đó:
Vậy mốt của dữ liệu là:
Tìm tập nghiệm của bất phương trình
Trong 100 vé số, có 5 vé trúng thưởng. Nam mua 3 tờ vé số. Tính xác suất để Nam trúng số.
Số phần tử không gian mẫu là:
Số vé không trúng thưởng là: 100 - 5 = 95 vé
Gọi A là biến cố: "Ba tờ vé số có vé trúng thưởng"
Trường hợp 1: Có 1 vé trúng, 2 vé không trúng
Kết quả là:
Trường hợp 2: Có 2 vé trúng, 1 vé không trúng
Kết quả là:
Trường hợp 3: Có 3 vé đều trúng
Kết quả là:
=> Số phần tử của biến cố A là:
=> Xác suất để Nam trúng số là:
Vậy kết quả là:
Tìm độ dài nhóm dữ liệu
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Chọn phương án đúng
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Chọn đáp án đúng
Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.
Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:
Tính xác suất để đoàn công tác có đúng một nữ
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”
S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”
T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”
Ta có:
Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.
Ta có
Lại có:
Tính số tam giác tù được tạo thành
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Tính giá trị đại diện của nhóm số liệu
Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:
Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 |
Giá trị đại diện của nhóm [150; 180) là bao nhiêu?
Giá trị đại diện của nhóm [150; 180) là:
Tính xác suất của biến cố
Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là
và
. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?
Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:
Tính số học sinh
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Tính số trận đấu
Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?
Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).
Như vậy, ta có trận đấu.
Tính giá trị đại diện một nhóm
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Giá trị đại diện cho nhóm [155; 160) bằng:
Giá trị đại diện của nhóm [155; 160) là
Chọn mô tả biến cố đúng
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố
.
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Tìm nhóm chứa trung vị
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Tìm khoảng chứa trung vị?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Ta lại có:
=> Nhóm chứa trung vị là:
Tính số cách lấy ra 6 cái bánh
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Ghi đáp án vào chỗ trống
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Tính tứ phân vị thứ nhất
Cho bảng dữ liệu như sau:
Đại diện A | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện X | Tần số | Tần số tích lũy |
[15,5; 20,5) | 5 | 5 |
[20,5; 25,5) | 6 | 11 |
[25,5; 30,5) | 12 | 23 |
[30,5; 35,5) | 14 | 37 |
[35,5; 40,5) | 26 | 63 |
[40,5; 45,5) | 12 | 75 |
[45,5; 50,5) | 16 | 91 |
[50,5; 55,5) | 9 | 100 |
| N = 100 |
|
Ta lại có:
=> Nhóm chứa là
(vì 25 nằm giữa các tần số tích lũy 23 và 37).
Khi đó ta tìm được các giá trị:
Tính xác suất của biến cố
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?
Gọi là biến cố bóng đèn thứ i sáng với
Gọi A là biến cố có ít nhất một bóng đèn sáng
Để không có bóng đèn nào sáng ta có các trường hợp như sau:
TH1: Cả 4 bóng đèn cùng hỏng
B là biến cố bốn bóng đèn bị hỏng
Khi đó xác suất để cả 4 bóng đèn bị hỏng là:
TH2: Cả 3 bóng đèn cùng hỏng
C là biến cố ba bóng đèn bị hỏng
Khi đó xác suất để có 3 bóng đèn bị hỏng là:
TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng
D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng
Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là:
Vậy xác suất để có ít nhất 1 bóng đèn sáng là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: