Hàm số
a) Hàm số
b) Hàm số
c) Hàm số
d) Hàm số
Vậy đồ thị hàm số
Soạn Toán 9 VNEN bài 3 Đường thẳng song song và đường thẳng cắt nhau được VnDoc sưu tầm và đăng tải nhằm hướng dẫn trả lời các câu hỏi trong SGK Toán 9. Mời các bạn tải về tham khảo chuẩn bị tốt cho bài học sắp tới
Vẽ đồ thị của hai hàm số y = -0,5x + 3 và y = -0,5x -2 trên cùng một mặt phẳng tọa độ (h.10)
- Nêu nhận xét về vị trí tương đối giữa hai đường thẳng vừa vẽ.
- So sánh hệ số góc của hai đường thẳng.
- Hãy cho biết quan hệ giữa vị trí trên mặt phẳng tọa độ của hai đường thẳng và các hệ số góc của chúng.
Trả lời:
- Hai đường thẳng song song với nhau
- Hệ số góc của hai đường thẳng y = -0,5x + 3 và y = -0,5x -2 bằng nhau và bằng -0,5
- Hai đường thằng y = ax + b (a ≠ 0) và y = a'x + b' (a' ≠ 0) song song với nhau khi và chỉ khi a = a', b ≠ b'
Vẽ đồ thị của hai hàm số y = -x + 2 và y = 0,5x -1 trên cùng một mặt phẳng tọa độ (h.11)
- Nêu nhận xét về vị trí tương đối giữa hai đường thẳng vừa vẽ.
- So sánh hệ số góc của hai đường thẳng (là hai số khác nhau hay bằng nhau?)
Trả lời:
- Hai đường thẳng y = -x + 2 và y = 0,5x -1 cắt nhau
- Hệ số góc của đường thẳng y = -x + 2 là -1
Hệ số góc của đường thẳng y = 0,5x -1 là 0,5
Vậy hệ số góc của hai đường thẳng y = -x + 2 và y = 0,5x -1 khác nhau.
Đồ thị của hàm số
a)
c)
Hàm số
a) Hàm số
b) Hàm số
c) Hàm số
d) Hàm số
Vậy đồ thị hàm số
Hãy chỉ ra ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song với nhau trong các đường thẳng sau:
y = 0,8x + 2; y = 15 - 1,5x ; y = -x + 6 ;
Ta có:
* Đường thẳng y = 0,8x + 2 song song với đường thẳng
* Ba cặp đường thẳng cắt nhau là:
Đường thẳng y = 0,8x + 2 cắt nhau với đường thẳng y = 15 - 1,5x
Đường thẳng y = 15 - 1,5x cắt nhau với đường thẳng y = -x + 6
Đường thẳng y = 15 - 1,5x cắt nhau với đường thẳng y = 1,5x - 15
Tìm tọa độ giao điểm của đồ thị các đồ thị hàm số:
a) y = 5x - 7 và y = 3x + 1; b) y = -3x + 2 và y = 8x - 9;
c) y = 0,4x - 5 và y = -0,1x - 3; d) y = 23x - 6 và y = -2x + 9;
e) y = 98x và y = -102x - 3; g) y = - 3 và y = 36x + 1.
Giải câu a)
y = 5x - 7 và y = 3x + 1
Vì
Vì
Vì
Từ (1) và (2) suy ra:
Thay vào (2) ta được y0 = 13
Vậy giao điểm của hai đường thẳng là M(4; 13).
Giải câu b)
y = -3x + 2 và y = 8x - 9
Vì
Vì M \in y = -3x0 + 2 (1)
Vì M \in y = 8x0 - 9 (2)
Từ (1) và (2) suy ra: -3x0 + 2 = 8x0 - 9 (3)
Thay vào (2) ta được y0 = -1
Vậy giao điểm của hai đường thẳng là M(1; -1).
Giải câu c)
y = 0,4x - 5 và y = -0,1x - 3
Vì 0,4 \neq -0,1 nên y = 0,4x - 5 và y = -0,1x - 3 cắt nhau. Gọi M(x0, y0) là giao điểm của y = 0,4x - 5 và y = -0,1x - 3.
Vì
Vì
Từ (1) và (2) suy ra:
Thay vào (2) ta được y0 = -3,4
Vậy giao điểm của hai đường thẳng là M(4; -3,4).
Giải câu d)
y = 23x - 6 và y = -2x + 9
Vì 23
Vì
Vì
Từ (1) và (2) suy ra:
Thay vào (2) ta được y0 = 7,8
Vậy giao điểm của hai đường thẳng là M(0,6; 7,8).
Giải câu e)
y = 98x và y = -102x - 3
Vì 98
Vì
Vì
Từ (1) và (2) suy ra:
Thay vào (2) ta được y0 = -1,47
Vậy giao điểm của hai đường thẳng là M(-0,015; -1,47).
Giải câu e)
y = - 3 và y = 36x + 1
Vì
Vì
Vì
Từ (1) và (2) suy ra:
Thay vào (2) ta được y0 = - 3
Vậy giao điểm của hai đường thẳng là
Cho hàm số
a) Cắt đồ thị của hàm số đã cho
b) Song song với đồ thị của hàm số đã cho
b) Gọi đồ thị của hàm số cần tìm là y = ax + b
Hai đồ thị song song với đồ thị của hàm số đã cho tức là
Vậy hàm số đã tìm là
Cho đường thẳng (d) y = ax + b. Tìm các giá trị của a, b trong mỗi trường hợp sau:
a) (d) song song với đường thẳng y = 3x + 5;
b) (d) trùng với đường thẳng y = -x + 2;
c) (d) cắt đường thẳng
d) (d) đi qua điểm
Cho đường thẳng (d) y = ax + b. Tìm các giá trị của a, b trong mỗi trường hợp sau:
a) (d) song song với đường thẳng y = 3x + 5 thì a = 3,
b) (d) trùng với đường thẳng y = -x + 2 thì a = -1; b = 2.
c) (d) cắt đường thẳng
d) (d) đi qua điểm
tức là:
và
Suy ra
Cho các đường thẳng
(d1): y = x + 1;
a) Không vẽ đồ thị các hàm số đó, cho biết các đường thẳng có vị trí như thế nào với nhau.
b) Viết phương trình đường thẳng đi qua A(-2; 2) và song song với đường thẳng (d2).
a) (d2) và (d3) có hệ số góc bằng nhau và
(d1) cắt (d2) và (d3)
b) Gọi phương trình đường thẳng cần tìm là (d') y = ax + b
Vì (d') // (d2) nên
Ta có: (d') đi qua A(-2; 2) nên
Vậy không có phương trình đi qua A(-2; 2) và song song với đường thẳng (d2).
Hãy tự kiểm chứng mệnh đề: Hai đường thẳng
Vận dụng: Viết phương trình đường thẳng qua gốc tọa độ và vuông góc với đường thẳng (d1): y = x + 1.
Vận dụng: Viết phương trình đường thẳng qua gốc tọa độ và vuông góc với đường thẳng (d1): y = x + 1
Gọi phương trình đường thẳng cần tìm là (d2) y = ax + b
Vì (d1) vuông góc (d2) nên a.1 = - 1 suy ra a = - 1
Vậy phương trình đường thẳng cần tìm là (d2) y = -x + b.
Tính diện tích tam giác giới hạn bởi các đường y = x; y = - x và y = 4.
Ta được tam giác OAB tạo bởi 3 đường y = x; y = - x và y = 4
Đường thẳng y = x vuông góc với đường thẳng y = - x nên OA vuông góc với OB
Ta có tọa độ của hai điểm A, B là A(4; 4), B(- 4; 4)
Suy ra
Diện tích tam giác OAB là
Trên mặt phẳng tọa độ Oxy cho hai điểm A(1; 1) và C(-1 ; -1).
a) Tìm các điểm B và D sao cho tứ giác ABCD là hình vuông.
b) Viết phương trình các đường thẳng chứa cạnh của hình vuông
a)
Để ABCD là hình vuông thì AB = BC = CD = DA
Khi đó B (1; -1), D(- 1; 1)
b) Phương trình đường thẳng chứa cạnh AB là đi x = 1
Phương trình đường thẳng chứa cạnh BC là đi y = - 1
Phương trình đường thẳng chứa cạnh CD là đi x = - 1
Phương trình đường thẳng chứa cạnh DA là đi y = 1.
a) Viết phương trình các đường thẳng biết rằng các đường thẳng (d1), (d2), (d3) này theo thứ tự cắt trục tung tại các điểm có tung độ lần lượt là
b) Cho đường thẳng
c) Cho đường thẳng
a)
Gọi phương trình đường thẳng (d1): y = ax + b
Vì (d1) cắt trục tung tại điểm có tung độ là 1 nên y0 = 1, (d1) tạo với Ox một góc 45 độ nên x0 = y0 = 1
Suy ra (d1) đi qua hai điểm (0; 1) và (1; 0)
Phương trình đường thẳng (d1) là y = - x + 1
Tương tự: phương trình đường thẳng (d2) là
phương trình đường thẳng (d3) là
b) Để đường thẳng (d') song song với đường thẳng (d1) thì
Vậy m = 0
c) Để đường thẳng (d'') cắt cả hai đường thẳng (d1) và (d2) thì
và
và
Viết phương trình đường thẳng đi qua A(4; 0) cắt tia Oy tại B(0; b) và diện tích tam giác OAB bằng 12.
Viết phương trình đường thẳng đi qua A(4; 0) cắt tia Oy tại B(0; b) và diện tích tam giác OAB bằng 12.
Gọi phương trình đường thẳng cần tìm là (d): y= ax + b
(d) đi qua A(4; 0) nên
Diện tích tam giác OAB là
Phương trình (d) là
Trên mặt phẳng tọa độ Oxy cho ba điểm A(a; 0); B(0; b) (với a > 0, b > 0) và C(1; 2) như trên hình 12.
a) Viết phương trình đường thẳng đi qua hai điểm A, B
b) Tìm hệ thức liên hệ giữa a, b sao cho ba điểm A, B, C thẳng hàng.
c) Tìm các giá trị của a, b sai cho bao điểm A, B, C thẳng hàng và diện tích tam giác OAB nhỏ nhất.
a) Gọi phương trình đường thẳng đi qua hai điểm A, B là (d): y = mx + n
Vì (d) đi qua hai điểm A(a; 0) và B(0; b) nên ta được n = b,
Vậy phương trình đường thẳng đi qua hai điểm A, B là (d):
b) Phương trình đường thẳng đi qua AB là (d):
Để A, B, C thẳng hàng thì điểm
Ta có:
c) Theo câu b, để A,B,C thẳng hàng thì
Ta có:
Để diện tích tam giác OAB nhỏ nhất thì
Xét biểu thức
Suy ra
Vậy a = 2, b = 4.
Giải bài 3: Đường thẳng song song và đường thẳng cắt nhau - Sách VNEN toán 9 tập 1 trang 45. Phần trên VnDoc đã hướng dẫn các bạn soạn Toán 9, trả lời các câu hỏi với lời giải chi tiết giúp các bạn nắm chắc kiến thức từ đó vận dụng tốt giải các bài tập Toán lớp 9. Chúc các bạn học tốt
.............................................
Ngoài Soạn Toán 9 bài 3 Đường thẳng song song và đường thẳng cắt nhau VNEN. Mời các bạn học sinh còn có thể tham khảo các Giải bài tập Toán lớp 9, Giải Vở BT Toán 9 các môn Toán, Văn, Anh, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với tài liệu lớp 9 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tốt