a) \(\frac{1}{4}\sqrt{180} + \sqrt{20} - \sqrt{45} + 5 = \frac{1}{4}.6\sqrt{5} + 2\sqrt{5} - 3\sqrt{5} + 5 = \frac{\sqrt{5}}{2} + 5\)
b) \(3\sqrt{\frac{1}{3}} + \frac{1}{4}\sqrt{48} - 2\sqrt{3} = 3\frac{\sqrt{3}}{3} + \frac{1}{4}.4\sqrt{3} - 2\sqrt{3} = 0\)
c) \(\sqrt{2a} - \sqrt{18a^{3}} + 4\sqrt{\frac{a}{2}} = \sqrt{2a} - 3a\sqrt{2a} + 4.\frac{\sqrt{2a}}{2} = 3\sqrt{2a} - 3a\sqrt{2a} = 3\sqrt{2a}(1 - a)\)
d) \(\sqrt{\frac{a}{1 + 2b + b^{2}}}.\sqrt{\frac{4a + 8ab + 4ab^{2}}{225}} = \sqrt{\frac{a}{(1 + 2b + b^{2}}}.\sqrt{\frac{4a(1 + 2ab + b^{2})}{225}} = \frac{2a}{15}\).