Áp dụng định lý Py-ta-go trong tam giác ABC ta có:
\(AB = \sqrt{AC^{2} + BC^{2}} = \sqrt{0,9{2} + 1,2^{2}} = 1,5cm\)
Ta có:
\(sinB = \frac{AC}{AB} = \frac{0,9}{1,5} = \frac{3}{5}\)
\(cosB = \frac{BC}{AB} = \frac{1,2}{1,5} = \frac{4}{5}\)
\(tanB = \frac{AC}{BC} = \frac{0,9}{1,2} = \frac{3}{4}\)
\(cotB = \frac{BC}{AC} = \frac{1,2}{0,9} = \frac{4}{3}\)
Ta có: \(\widehat{A} + \widehat{B} = 90^{\circ}\) nên:
\(sin A = cosB = \frac{BC}{AB} = \frac{1,2}{1,5} = \frac{4}{5}\)
\(cos A = sinB = \frac{AC}{AB} = \frac{0,9}{1,5} = \frac{3}{5}\)
\(tan A = cotB = \frac{BC}{AC} = \frac{1,2}{0,9} = \frac{4}{3}\)
\(cot A = tanB = \frac{AC}{BC} = \frac{0,9}{1,2} = \frac{3}{4}.\)