Đề thi Olympic môn Toán lớp 6
Đề ôn thi HSG môn Toán lớp 6
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
PHÒNG GD&ĐT THANH OAI
TRƯỜNG THCS CAO DƯƠNG
ĐỀ THI OLYMPIC
MÔN TOÁN LỚP 6
(Thời gian làm bài 120 phút, không kể giao đề)
Câu 1( 6 điểm)
1. Tính
B
A
, biết
: ,
B =
1
199
2
198
...
197
3
198
2
199
1
2. Chứng tỏ rằng: Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31.
3. Tìm hai số tự nhiên a,b biết: a + 2b = 48 và
114),(,.3 baba
.
Câu 2 ( 4,0 điểm)
1. Tìm các số tự nhiên x, y sao cho: 7
x
+ 12
y
= 50.
2. Tìm tất cả các số tự nhiên n để phân số
721
318
n
n
có thể rút gọn được.
Câu 3 (2,0 điểm): Chứng minh rằng mọi số tự nhiên n lớn hơn 6 đều biểu diễn được
dưới dạng tổng hai số nguyên tố cùng nhau lớn hơn 1.
Câu 4 ( 6,0 điểm) : Người ta đã chứng minh được tính chất sau: Cho n tia chung gốc
O là: Ox
1
, Ox
2
,…, Ox
n
tạo thành n góc phân biệt x
1
Ox
2
, x
2
Ox
3
, …x
n-1
Ox
n
, x
n
Ox
1.
Khi
đó :
x
1
Ox
2
+
x
2
Ox
3
+…+
x
n-1
Ox
n
+
x
n
Ox
1
= 360
0
. Hãy áp dụng tính chất
trên để giải bài toán sau:
Cho ba tia OA, OB, OC tạo thành ba góc không có điểm trong chung là: AOB,
BOC và COA.
a, Chứng tỏ rằng trong ba góc đó ít nhất một góc lớn hơn hoặc bằng 120
0
.
b, Giả sử
AOB = 130
0
,
BOC = 100
0
. Gọi OM là tia đối của tia OA. Chứng
tỏ rằng tia OM là tia phân giác của góc BOC .
Câu 5(2,0 điểm): Tìm các số tự nhiên a, b, c sao cho:
a + b + c = abc và a > b > c > 0
------------------------ Hết -------------------------
(Cán bộ coi thi không giải thích gì thêm)
Tham khảo đề thi HSG lớp 6:
https://vndoc.com/thi-hoc-sinh-gioi-lop-6
Đề chính thức
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
PHÒNG GD&ĐT THANH OAI
TRƯỜNG THCS BÍCH HÒA
ĐỀ THI OLYMPIC
MÔN TOÁN 6
(Thời gian làm bài 120 phút, không kể giao đề)
Bài 1 ( 2,0 điểm) :
Tính A =
7777 77 7777 77 123498766
.
8585 85 16362 162 987661234
Bài 2 (5,0 điểm) :
a, Cho biết S =
1 1 1
...
101 102 130
Chứng minh rằng
1
4
< S <
91
330
b, Tìm phân số lớn nhất, khi chia các phân số
24
7
và
18
11
cho nó ta đều được các
thương là số nguyên.
Bài 3 ( 4,0 điểm) :
a, Tìm các số tự nhiên a,b,c biết
2 2 2 2 2 2 2 2 2 2 2 2
1 1 1
1
a a b a b a b c a a b c
b, Tìm các số tự nhiên có bốn chữ số sao cho khi chia nó cho 130 , cho 150
được các số dư lần lượt là 88 và 108.
Bài 4 (3,0 điểm):
a)Tìm số tự nhiên n để phân số
10n4
3n10
B
đạt giá trị lớn nhất .Tìm giá trị lớn nhất
đó.
b)Tìm các số tự nhiên x, y sao cho:
18
1
y
3
9
x
Bài 5 ( 6,0 điểm) :
Cho tia Oz nằm trong góc vuông xOy. Vẽ tia Ot sao cho Ox là tia phân giác
của
góc tOz. Vẽ tia Om sao cho tia Oy là phân giác của góc zOm.
a, Chứng minh rằng tia Om và tia Ot là hai tia đối nhau .
b, Gọi Ox’ là tia đối của tia Ox, biết góc x’Om bằng 30
0
. Tính góc tOz .
c, Vẽ thêm 2014 tia phân biệt gốc O (không trùng với các tia Ox,Oz,Oy,Om,Ox’ và
Ot ).
Hỏi trong hình vẽ có tất cả bao nhiêu góc ?
Đề chính thức
Đề thi Olympic môn Toán lớp 6
Đề thi Olympic môn Toán lớp 6 các năm cho các em học sinh tham khảo, ôn tập học tập tốt môn Toán lớp 6 cũng như luyện tập và làm quen với nhiều đề học sinh giỏi hơn nhằm chuẩn bị tốt nhất cho các kì thi học sinh giỏi bậc THCS sắp diễn ra. Mời các bạn tham khảo.
Đề thi Olympic môn Toán lớp 6 bao gồm 2 đề thi. Mỗi đề gồm 5 câu hỏi tự luận giúp các em học sinh nắm được các kiến thức môn Toán hệ thống lại chương trình học, chuẩn bị cho các kì thi học sinh giỏi trong năm học đạt hiệu quả cao.
Đề thi học sinh giỏi môn Toán lớp 6 các năm
- Đề thi học sinh giỏi môn Toán lớp 6 năm học 2019 - 2020
- Đề thi học sinh giỏi môn Toán lớp 6 năm học 2019 - 2020 - Đề 2
- Đề thi học sinh giỏi môn Toán lớp 6 năm học 2018 - 2019
- Đề thi học sinh giỏi môn Toán lớp 6 phòng GD&ĐT Giao Thủy năm 2018 - 2019
- Tuyển tập đề thi học sinh giỏi môn Toán lớp 6 (có đáp án)
- Đề thi giao lưu học sinh giỏi cấp huyện lớp 6 môn Toán Phòng GD&ĐT Tam Dương năm học 2017 - 2018
- Đề thi chọn học sinh giỏi lớp 6 môn tiếng Anh Phòng GD&DT Tiền Hải, Thái Bình năm học 2017-2018 có đáp án
- Đề thi học sinh giỏi môn Toán lớp 6 trường THCS Lương Thế Vinh năm 2017 - 2018