Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 1 Mệnh đề và tập hợp sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm mệnh đề đúng.

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 2: Vận dụng

    Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:

    Cho ba mệnh đề: P: “số 20chia hết cho 5 và chia hết cho 2

    Q: “ Số 35 chia hết cho 9

    R: “ Số 17 là số nguyên tố ”

    Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:

    P đúng, Q sai, R đúng.

    \overline{Q} đúng, R đúng nên \overline{Q} \Rightarrow Rđúng,

    P đúng, \overline{Q} \Rightarrow Rđúng nên P \Leftrightarrow \left( \overline{Q} \Rightarrow
R ight)đúng, \left( \overline{Q}
\Rightarrow R ight) \Rightarrow P đúng.

    R đúng, \overline{Q} đúng nên R \Leftrightarrow \overline{Q}đúng.

    R đúng, P đúng nên R
\Rightarrow P đúng,

    R \Rightarrow P đúng, Q sai nên (R
\Rightarrow P) \Rightarrow Q sai.

    Chọn đáp án (R \Rightarrow P) \Rightarrow
Q.

  • Câu 3: Nhận biết

    Xác định câu là mệnh đề

    Trong các câu sau, câu nào là mệnh đề?

    Đáp án cần tìm là: “Nha Trang là một thành phố ven biển ở Việt Nam”.

  • Câu 4: Thông hiểu

    Chọn phương án thích hợp

    Mệnh đề phủ định của mệnh đề “\exists
x\mathbb{\in R},\ x^{2} + x + 13 = 0” là

    Mệnh đề phủ định của mệnh đề “ \exists
x\mathbb{\in R},\ x^{2} + x + 13 = 0 ” là “ \forall x\mathbb{\in R},\ x^{2} + x + 13 \neq
0

  • Câu 5: Nhận biết

    Chọn đáp án chính xác nhất

    Mệnh đề P \Leftrightarrow Q chỉ đúng khi nào? (Hãy chọn đáp án chính xác nhất)

    Đáp án cần tìm là: “Cả P Q đều cùng đúng hoặc cùng sai”.

  • Câu 6: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là sai?

    Trong các mệnh đề sau, mệnh đề nào là sai:

    Ta thấy mệnh đề A ∈ A sai vì giữa hai tập hợp không có quan hệ phụ thuộc.

  • Câu 7: Nhận biết

    Chọn khẳng định đúng

    Cho hai tập hợp A = \left\{ x\mathbb{\in
R}| - 3 < x \leq 2 \right\}, B =
( - 1;\ 3). Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    A = \left\{ x\mathbb{\in R}| - 3 < x
\leq 2 \right\} = ( - 3;\ 2\rbrack

    \Rightarrow ( - 3;\ 2\rbrack \cap ( - 1;\
3) = ( - 1;\ 2\rbrack.

  • Câu 8: Nhận biết

    Phủ định mệnh đề đã cho

    Mệnh đề: “Mọi động vật đều di chuyển” có mệnh đề phủ định là

    Mệnh đề: “Mọi động vật đều di chuyển” có mệnh đề phủ định là: “Có ít nhất một động vật không di chuyển”.

  • Câu 9: Vận dụng cao

    Chọn đáp án đúng

    Cho tập hợp A = (0; + \infty)B = \left\{ x\mathbb{\in R}|mx^{2} - 4x + m
- 3 = 0 \right\}. Tìm m để B có đúng hai tập con và B \subset A.

    Để B có đúng hai tập con thì B phải có duy nhất một phần tử, và B \subset A nên B có một phần tử thuộc A.

    Tóm lại ta tìm m để phương trình mx^{2} - 4x + m - 3 = 0 (1) có nghiệm duy nhất lớn hơn 0.

    + Với m = 0 ta có phương trình: - 4x - 3 = 0 \Leftrightarrow x = \frac{-
3}{4} (không thỏa mãn).

    + Với m \neq 0:

    Phương trình (1) có nghiệm duy nhất lớn hơn 0 điều kiện cần là:

    \Delta' = 4 - m(m - 3) = 0
\Leftrightarrow - m^{2} + 3m + 4 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = 4 \\
\end{matrix} \right.

    +) Với m = - 1 ta có phương trình - x^{2} - 4x - 4 = 0

    Phương trình có nghiệm x = - 2 (không thỏa mãn).

    +) Với m = 4, ta có phương trình 4x^{2} - 4x + 1 = 0

    Phương trình có nghiệm duy nhất x =
\frac{1}{2} > 0 \Rightarrow m = 4 thỏa mãn.

  • Câu 10: Thông hiểu

    Chọn mệnh đề đúng

    Cho a\mathbb{\in Z}. Mệnh đề nào dưới đây đúng?

    Đáp án a \vdots \ 3 \Leftrightarrow a
\vdots \ 9 sai vì 3 \vdots \
3 nhưng 3 không chia hết cho 9.

    Đáp án a \vdots \ 2 \Leftrightarrow a
\vdots \ 4 sai vì 2 \vdots \
2 nhưng 2 không chia hết cho 4.

    Đáp án “a \vdots \ 3a \vdots \ 6 thì a \vdots  18” sai vì 6 \vdots \ 36 \vdots 6 nhưng 6 không chia hết cho 18.

    Vậy đáp án đúng là a\  \vdots \
2a\  \vdots \ 3 \Leftrightarrow
a \vdots \ 6.

  • Câu 11: Vận dụng

    Tìm các số nguyên dương của tham số m

    Cho hai tập hợp khác rỗng A = (m -
1;4\rbrackB = ( - 2;2m +
2),m\mathbb{\in R}. Có bao nhiêu giá trị nguyên dương của m để A \cap B
\neq \varnothing?

    Ta có A,B là hai tập khác rỗng nên \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
m > - 2 \\
\end{matrix} \right.\  \Leftrightarrow - 2 < m <
5(*).

    Ta có A \cap B \neq \varnothing
\Leftrightarrow m - 1 < 2m + 2 \Leftrightarrow m > -
3.

    Đối chiếu với điều kiện (*), ta được - 2
< m < 5.

    Do m \in \mathbb{Z}^{+} nên m \in \left\{ 1;2;3;4 \right\}.

    Vậy có 4 giá trị nguyên dương của m thỏa mãn yêu cầu.

  • Câu 12: Nhận biết

    Xác định số mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    (I) Hãy mở cửa ra!                            (II) Số 25 chia hết cho 8.

    (III) Số 17 là số nguyên tố.               (IV) Bạn thích ăn phở không?

    Các câu (III) và (II) là mệnh đề.

  • Câu 13: Thông hiểu

    Tổng quát hóa mệnh đề phủ định

    Mệnh đề nào sau đây phủ định mệnh đề P: ‘’ tích 3 số tự nhiên liên tiếp chia hết cho 6’’

    Mệnh đề P: ‘’ tích 3 số tự nhiên liên tiếp chia hết cho 6’’.

    \Leftrightarrow P:''\forall n \in
N,n(n + 1)(n + 2) \vdots 6''.

    Mệnh đề phủ định là \overline{P}:"\exists n \in
N,n(n + 1)(n + 2)⋮̸ 6".

  • Câu 14: Thông hiểu

    Tìm số tập X thỏa mãn yêu cầu bài toán

    Cho tập hợp A = \left\{ 1;2;3;4;5
\right\}. Tìm số tập hợp X sao cho A\backslash X = \left\{ 1;3;5 \right\}X\backslash A = \left\{ 6;7
\right\}.

    A\backslash X = \left\{ 1;3;5
\right\} nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5.

    Mặt khác X\backslash A = \left\{ 6;7
\right\} vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc A.

    Vậy X = \left\{ 2;4;6;7
\right\}.

  • Câu 15: Nhận biết

    Tìm khẳng định đúng

    Cho hai tập hợp A = \left\{ 1;2;3;7
\right\},\ \ B = \left\{ 2;4;6;7;8 \right\}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
A \cap B = \left\{ 2;7 \right\} \\
A \cup B = \left\{ 1;2;3;4;6;7;8 \right\} \\
A\backslash B = \left\{ 1;3 \right\} \\
B\backslash A = \left\{ 4;6;8 \right\} \\
\end{matrix} \right..

  • Câu 16: Thông hiểu

    Phát biểu lại mệnh đề

    Cho mệnh đề kéo theo: “ Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau”. Hãy phát biểu lại mệnh đề trên bằng cách sử dụng “ điều kiện cần” hoặc “ điều kiện đủ”.

    Phát biểu lại như sau: “Hai tam giác bằng nhau là điều kiện đủ để hai tam giác có diện tích bằng nhau”/

  • Câu 17: Nhận biết

    Chọn kết quả đúng

    Cho hai tập hợp A = \left\{ a;\ \ b;\ \
c;\ \ d;\ \ m \right\},\ \ B = \left\{ c;\ \ d;\ \ m;\ \ k;\ \ l
\right\}. Tìm A \cap
B.

    Tập hợp A và tập hợp B có chung các phần tử c,\ \ d,\ \ m.

    Do đó A \cap B = \left\{ c;\ \ d;\ \ m
\right\}.

  • Câu 18: Nhận biết

    Chọn đáp án đúng

    Cho tập X = \left\{ 2;4;6;9 \right\},Y =
\left\{ 1;2;3;4 \right\}. Tập nào sau đây bằng tập X\backslash Y?

    X\backslash Y là tập hợp các phần tử thuộc X mà không thuộc Y

  • Câu 19: Thông hiểu

    Xác định giá trị tham số a

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

  • Câu 20: Nhận biết

    Xác định mệnh đề tương đương

    Mệnh đề nào sau đây tương đương với mệnh đề A \neq \varnothing?

    Mệnh đề tương đương với mệnh đề A \neq
\varnothing\exists x,x \in A.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo