Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 6 Thống kê

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 6 Thống kê sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tìm các giá trị bất thường

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 2: Thông hiểu

    Xác định độ lệch chuẩn

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 3: Nhận biết

    Chọn đáp án đúng

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =
2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,83

  • Câu 4: Nhận biết

    Tìm mốt của mẫu số liệu

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 5: Nhận biết

    Tìm mốt của mẫu số liệu

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 6: Nhận biết

    Xác định số quy tròn của số a

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 7: Nhận biết

    Tìm số quy tròn

    Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.

    Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:

    a = 23748023.

  • Câu 8: Thông hiểu

    Tìm tứ phân vị

    Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.

    Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.

    Trung vị của mẫu số liệu 8 8 là \frac{8 +
8}{2} = 8.

    Trung vị của mẫu số liệu 15 20 là \frac{15 + 20}{2} = 17,5.

    Vậy Q_{1} = 8;\ Q_{2} = 9;\ Q_{3} =
17,5.

  • Câu 9: Vận dụng

    Tìm x

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

  • Câu 10: Nhận biết

    Tính số trung bình cộng

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 11: Nhận biết

    Chọn đáp án đúng

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 12: Thông hiểu

    Xác định trung vị của dãy số liệu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 13: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 14: Vận dụng

    Viết giá trị của chu vi dưới dạng chuẩn

    Đường kính của một đồng hồ cát là 8,52m với độ chính xác đến 1cm. Dùng giá trị gần đúng của \pi là 3,14 cách viết chuẩn của chu vi (sau khi quy tròn) là:

    Gọi d là đường kính thì d = 8,52m \pm 1cm \Rightarrow 8,51m \leq d \leq
8,53m.

    Khi đó chu vi là C = \pi d26,7214 \leq C \leq 26,7842

    \Rightarrow C =26,7528 \pm 0,0314.

    Ta có: 0,0314 < 0,05 =
\frac{0,1}{2} nên cách viết chuẩn của chu vi là 26,7.

  • Câu 15: Vận dụng

    Xác định các tứ phân vị

    Cho dãy số liệu về chiều cao của một nhóm học sinh như sau: 160;178;150;164;168;176;156;172. Các tứ phân vị của mẫu số liệu là:

    Dãy số liệu sắp xếp theo thứ tự không giảm là: 150;156;160;164;168;172;176;178

    Trung vị là Q_{2} = \frac{164 + 168}{2} =
166

    Nửa dữ liệu bên trái Q_{2} là: 150;156;160;164

    Do đó Q_{1} = \frac{156 + 160}{2} =
158

    Nửa dữ liệu bên phải Q_{2} là: 168;172;176;178

    Do đó Q_{3} = \frac{172 + 176}{2} =
174

  • Câu 16: Thông hiểu

    Tính độ lệch chuẩn

    Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:

    Số tiền nước trung bình là:

    \overline x  = \frac{{56 + 45 + 103 + 239 + 125}}{5} = 113,6

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{5}\left( {{{56}^2} + {{45}^2} + {{103}^2} + {{239}^2} + {{125}^2}} ight) - {\left( {113,6} ight)^2} \hfill \\   \Rightarrow {S^2} = 4798,24 \hfill \\ \end{matrix}

    Độ lệch chuẩn là: 

    \Rightarrow S = \sqrt {{S^2}}  = \sqrt {4798,24}  \approx 69,27

  • Câu 17: Thông hiểu

    Đánh giá sai số tuyệt đối của một số

    Số \overline{a} được cho bởi số gần đúng a = 5,7824 với sai số tương đối không vượt quá 0,5\%. Hãy đánh giá sai số tuyệt đối của \overline{a}.

    Ta có \delta_{a} =
\frac{\Delta_{a}}{|a|} suy ra \Delta_{a} = \delta_{a}.|a|.

    Do đó \Delta_{a} \leq
\frac{0,5}{100}.5,7824 = 0,028912 \approx 2,89\%.

  • Câu 18: Nhận biết

    Chọn công thức đúng

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 19: Thông hiểu

    Viết kết quả gần đúng của S dưới dạng chuẩn

    Một hình chữ nhật cố diện tích là S =
180,57cm^{2} \pm 0,6cm^{2}. Kết quả gần đúng của S viết dưới dạng chuẩn là:

    Ta có d = 0,6 < 5 =
\frac{10}{2} nên S có 3 chữ số chắc.

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Một hình chữ nhật cố các cạnh:x = 4,2m
\pm 1cm, y = 7m \pm 2cm. Chu vi của hình chữ nhật và sai số tuyệt đối của giá trị đó.

    Ta có chu vi hình chữ nhật là P = 2(x +
y) = 22,4m \pm 6cm.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Thống kê Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo