Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 5 Vectơ sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn kết luận đúng

    Cho hình thoi ABCD tâm O, cạnh bằng a và \widehat{A}=60^0. Kết luận nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn kết luận đúng

    Ta có:  ABCD là hình thoi \widehat{A}=60^0

    => \widehat{ADC}=120^0

    Áp dụng định lí cosin trong tam giác ADC ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} - 2AD.DC\cos {120^0} \hfill \\   \Rightarrow A{C^2} = {a^2} + {a^2} - 2.a.a.\left( { - \dfrac{1}{2}} ight) \hfill \\   \Rightarrow A{C^2} = 3{a^2} \hfill \\   \Rightarrow AC = a\sqrt 3  \hfill \\   \Rightarrow OA = \dfrac{1}{2}AC = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    =>AO=|\overrightarrow{AO}|=\frac{a\sqrt{3}}{2}

  • Câu 2: Vận dụng

    Chọn đẳng thức đúng

    Cho tứ giác ABCD. Trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}ight)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} ight) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
ight).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =\overrightarrow{AD} + 2\ \overrightarrow{BC}\Leftrightarrow\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} +\frac{2}{3}\overrightarrow{BC}.

  • Câu 3: Nhận biết

    Chọn đáp án đúng

    Cho hình vuông ABCD, tính \cos\left(
\overrightarrow{AB},\overrightarrow{CA} \right)?

    Đầu tiên ta đi tìm số đo của góc \left(
\overrightarrow{AB},\overrightarrow{CA} \right) sau đó mới tính \cos\left(
\overrightarrow{AB},\overrightarrow{CA} \right)

    \left(
\overrightarrow{AB},\overrightarrow{CA} \right) = 180^{o} - \left(
\overrightarrow{AB},\overrightarrow{CA} \right) = 135^{o} \Rightarrow \cos\left(
\overrightarrow{AB},\overrightarrow{CA} \right) = -
\frac{\sqrt{2}}{2}.

  • Câu 4: Thông hiểu

    Tìm tọa độ điểm E

    Trong mặt phẳng Oxy, cho B(5; - 4),C(3;7). Tọa độ của điểm E đối xứng với C qua B

    Ta có: E đối xứng với C qua B
\Rightarrow B là trung điểm đoạn thẳng EC

    Do đó, ta có: \left\{ \begin{matrix}
5 = \frac{x_{E} + 3}{2} \\
- 4 = \frac{y_{E} + 7}{2}
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 7 \\
y_{E} = - 15
\end{matrix} \right.\  \Rightarrow E(7; - 15).

  • Câu 5: Thông hiểu

    Đẳng thức nào sau đây sai?

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB}= \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC}

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 6: Nhận biết

    Tìm đẳng thức sai

    Cho hình bình hành ABCD. Đẳng thức nào sau đây sai.

    Ta có: \left| \overrightarrow{AC} \right|
= \left| \overrightarrow{BD} \right| sai do ABCD là hình bình hành.

  • Câu 7: Vận dụng

    Tìm tọa độ điểm A

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 8: Thông hiểu

    Chọn đẳng thức đúng

    Cho hình bình hành ABCDtâm O. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} +
\overrightarrow{DO}

    = \left( \overrightarrow{AO} +
\overrightarrow{CO} \right) + \left( \overrightarrow{BO} +
\overrightarrow{DO} \right) = \overrightarrow{0} + \overrightarrow{0} =
\overrightarrow{0}

  • Câu 9: Nhận biết

    Xác định đẳng thức đúng

    Chọn đẳng thức đúng:

    Đẳng thức đúng là: \overrightarrow{AB} =\overrightarrow{CB}+ \overrightarrow{AC}.

  • Câu 10: Thông hiểu

    Tính độ dài vectơ

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 11: Nhận biết

    Chọn đẳng thức đúng

    Cho tam giác ABCD,\ Mlần lượt là trung điểm của AC,BD. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có

    \overrightarrow{MA} +
\overrightarrow{MC} + 2\overrightarrow{MB} = 2\overrightarrow{MD} +
2\overrightarrow{MB}

    = 2\left( \overrightarrow{MD} +
\overrightarrow{MB} \right) = 2.\overrightarrow{0} =
\overrightarrow{0}.

  • Câu 12: Nhận biết

    Xác định tọa độ vecto

    Trong mặt phẳng tọa độ Oxy, tọa độ vecto \overrightarrow{w} = 8\overrightarrow{j} -
3\overrightarrow{i} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{w} =
8\overrightarrow{j} - 3\overrightarrow{i} = ( - 3;8).

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{BC}.

    Xác định được góc \left(
\overrightarrow{AB},\overrightarrow{BC} \right) là góc ngoài của góc \widehat{B} nên \left( \overrightarrow{AB},\overrightarrow{BC}
\right) = 120^{0}

    Do đó \overrightarrow{AB}.\overrightarrow{BC} =AB.BC.\cos\left( \overrightarrow{AB},\overrightarrow{BC} \right) =a.a.\cos120^{0} = - \frac{a^{2}}{2}

  • Câu 14: Vận dụng

    Tính độ dài của vectơ

    Cho hình vuông ABCD cạnh a, tâm O. Tính \left| \overrightarrow{OB} + \overrightarrow{OC}
ight|.

    Gọi M là trung điểm của BC.

    Ta có \left| \overrightarrow{OB} +
\overrightarrow{OC} ight| = 2\left| \overrightarrow{OM} ight| = 2OM
= AB = a.

  • Câu 15: Nhận biết

    Tìm tọa độ vecto

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 16: Thông hiểu

    Tìm tọa độ điểm D

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm D \in Ox sao cho điểm D cách đều hai điểm A;B?

    Ta có: D \in Ox \Rightarrow
D(x;0)

    Từ DA = DB

    \Leftrightarrow \sqrt{(1 - x)^{2} +
5^{2}} = \sqrt{( - 2 - x)^{2} + 6^{2}}

    \Leftrightarrow x = -
\frac{7}{3}

    \Rightarrow D\left( - \frac{7}{3};0
ight)

    Vậy tọa độ điểm D cần tìm là: D\left( -
\frac{7}{3};0 ight).

  • Câu 17: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCD với I là giao điểm của 2 đường chéo. Khẳng định nào sau đây là khẳng định sai?

    Ta có: \overrightarrow{AC},\
\overrightarrow{BD} không cùng phương và độ lớn nên \overrightarrow{AC} \neq
\overrightarrow{BD}.

  • Câu 18: Nhận biết

    Tìm hình vẽ chính xác

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Cho hai điểm A( - 3,2),\ B(4,3). Tìm điểm M thuộc trục Oxvà có hoành độ dương để tam giác MAB vuông tại M?

    Ta có A( - 3,2),\ B(4,3), gọi M(x;0),x > 0.

    Khi đó \overrightarrow{AM} = (x + 3; -
2), \overrightarrow{BM} = (x - 4; -
3).

    Theo yêu cầu bài toán:

    \overrightarrow{AM}.\overrightarrow{BM}
= 0 \Leftrightarrow x^{2} - x - 6 = 0\Rightarrow \left\lbrack \begin{matrix}
x = - 2\ \ (l) \\
x = 3
\end{matrix} \right.\  \Rightarrow M(3;0).

  • Câu 20: Vận dụng cao

    Chọn đáp án thích hợp

    Cho hai điểm A,\ \ B phân biệt và cố định, với I là trung điểm của AB. Tìm tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
\right| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
\right|.

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA

    \Rightarrow 2\overrightarrow{EA} +
\overrightarrow{EB} = \overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB

    \Rightarrow 2\overrightarrow{FB} +
\overrightarrow{FA} = \overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} \right|

    \Leftrightarrow \left|
2\overrightarrow{ME} + 2\overrightarrow{EA} + \overrightarrow{ME} +
\overrightarrow{EB} \right| = \left| 2\overrightarrow{MF} +
2\overrightarrow{FB} + \overrightarrow{MF} + \overrightarrow{FA}
\right|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} \right| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} \right|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} \right| = \left| 3\ \overrightarrow{MF} \right|
\Leftrightarrow ME = MF\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (*).

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF.

    Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF. lời g

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} \right| là đường trung trực của đoạn thẳng AB.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo