Chọn mệnh đề sai
Cho tam giác đều
. Mệnh đề nào sau đây là sai?
Đáp án “” sai do hai vectơ không cùng phương.
Đề kiểm tra 15 phút Toán 10 Chương 5 Vectơ sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Chọn mệnh đề sai
Cho tam giác đều
. Mệnh đề nào sau đây là sai?
Đáp án “” sai do hai vectơ không cùng phương.
Chọn đáp án đúng
Cho tam giác
vuông tại
có
,
. Tính
?
Ta có:
.
Đẳng thức nào sau đây đúng?
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Tìm câu sai
Cho hình thang vuông
có đáy lớn
, đáy nhỏ
, đường cao
;
là trung điểm của
. Câu nào sau đây sai?
Phương án :
nên loại.
Phương án :
suy ra
nên loại.
Phương án :
suy ra
nên loại.
Phương án :
không vuông góc với
suy ra
nên chọn.
Tìm khẳng định đúng
Cho hình vuông
. Khẳng định nào sau đây đúng?
Chọn Vì
Xác định hai vectơ cùng phương
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây cùng phương?
Ta có:
=> Đáp án cần tìm là: và
..
Khẳng định nào sau đây đúng?
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Tìm khẳng định sai
Chọn khẳng định sai:
Ta có: .
Tính độ dài vectơ
Cho tam giác
vuông tại
có
. Tính độ dài
.

Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Chọn phương án thích hợp
Cho đoạn thẳng
và điểm I thỏa mãn
. Hình nào sau đây mô tả đúng giả thiết này?

Ta có: .
Do đó ;
và
ngược hướng.
Chọn Hình 4.
Xác định tọa độ vecto
Tìm tọa độ vecto
biết
?
Ta có:
Tìm điều kiện để hai vectơ bằng nhau
Cho các vectơ
. Điều kiện để vectơ
là:
Ta có: .
Xét tính đúng sai của các khẳng định
Cho hình thoi
tâm
có
. Các khẳng định sau đúng hay sai?
a) Điểm
thỏa
thì
là trọng tâm
. Đúng||Sai
b) Tập hợp điểm
thỏa
là đường tròn tâm
, bán kính 7,5. Sai||Đúng
c) Giá trị
thỏa
là
. Sai||Đúng
d) Biết
và
. Khi đó
cùng phương với
. Sai||Đúng
Cho hình thoi
tâm
có
. Các khẳng định sau đúng hay sai?
a) Điểm
thỏa
thì
là trọng tâm
. Đúng||Sai
b) Tập hợp điểm
thỏa
là đường tròn tâm
, bán kính 7,5. Sai||Đúng
c) Giá trị
thỏa
là
. Sai||Đúng
d) Biết
và
. Khi đó
cùng phương với
. Sai||Đúng
Hình vẽ minh họa

a) Đúng
.
Suy ralà trọng tâm
.
b) Sai
Vậy tập hợp điểm là đường tròn tâm
bán kính 2,5.
Nhận xét: và
đều
.
c) Sai
d) Sai
.
.
Chứng minh: và
không song song
Ta có và
nên
là hình bình hành.
Gọi và
là hình bình hành nên
là trung điểm
.
Gọi và
là hình bình hành nên
là trung điểm
Suy ra tứ giác là hình bình hành
.
Do đó không song song với
hay
không song song với

Vậy không cùng phương với
.
Chọn khẳng định đúng
Trong mặt phẳng tọa độ
cho bốn điểm
. Khẳng định nào sau đây là đúng?
Ta có: .
Vậy cùng phương nhưng ngược hướng.
Mệnh đề nào sau đây đúng?
Cho đường tròn
và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Chọn đẳng thức đúng
Cho các điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có:
.
Chọn đáp án đúng
Trong mặt phẳng tọa độ
cho ba điểm
. Tính tích vô hướng
?
Ta có .
Suy ra
Tìm E sao cho B,C,E thẳng hàng
Trong mặt phẳng tọa độ
, cho hai điểm
. Xác định điểm
trên trục hoành sao cho ba điểm
thẳng hàng.
Gọi khi đó
Ba điểm thẳng hàng khi và chỉ khi
cùng phương với
.
Chọn đáp án đúng
Cho tam giác
với
. Tìm
để
là hình bình hành?
Ta có: là hình bình hành
.
Xác định điểm M
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: