Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 8 Đại số tổ hợp sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 2: Thông hiểu

    Tìm hệ số không chứa x

    Tìm hệ số không chứa x trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n}, biết n là sô nguyên dương thỏa mãn C_{n}^{n - 1} + C_{n}^{n - 2} =
78.

    C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow n + \frac{n(n - 1)}{2} = 78 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 12 \\
n = - 13(l) \\
\end{matrix} ight..

    \left( x^{3} - \frac{2}{x} ight)^{n} =
\left( x^{3} - \frac{2}{x} ight)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}\left( x^{3} ight)^{12 - k}( - 2)^{k}\left(
\frac{1}{x} ight)^{k} =}\sum_{k = 0}^{12}{C_{12}^{k}( - 2)^{k}x^{36 -
4k}}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9C_{12}^{9}( - 2)^{9} = -
112640.

  • Câu 3: Vận dụng

    Chọn đáp án đúng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 4: Nhận biết

    Hỏi có bao nhiêu tập con

    Cho tập hợp M30 phần tử. Số tập con gồm 5 phần tử của M là:

    Số tập con gồm 5 phần tử của M chính là số tổ hợp chập 5 của 30 phần tử, nghĩa là bằng C_{30}^{5}.

  • Câu 5: Nhận biết

    Tìm hệ số của số hạng

    Tìm hệ số của số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có: \left( x + \frac{1}{x^{2}}
ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 - k}}.\left(
\frac{1}{x^{2}} ight)^{k} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 -
3k}}.

    Số hạng tổng quát của khai triển là: T_{k
+ 1} = C_{40}^{k}.x^{40 - 3k}.

    Số hạng chứa x^{31} trong khai triển tương ứng với 40 - 3k = 31
\Leftrightarrow k = 3.

    Vậy hệ số cần tìm là: C_{40}^{3} =
C_{40}^{37} (theo tính chất của tổ hợp: C_{n}^{k} = C_{n}^{n - k}).

  • Câu 6: Thông hiểu

    Tìm cách xếp các thành viên cùng quốc tịch cạnh nhau

    Một hội nghị bàn tròn có phái đoàn của các nước: Việt Nam có 3 người; Nhật có 5 người; Hàn Quốc có 2 người; Ấn Độ có 3 người; Thái Lan có 4 người. Hỏi có bao nhiêu cách xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau?

    Ta thấy tổng số nước tham dự hội nghị là 5 nước.

    Để xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau ̀ta thực hiện như sau:

    Xếp cờ của 5 nước vào 5 vị trí xung quanh bàn tròn: có 4! cách xếp.

    Ở vị trí cờ của Việt Nam xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Nhật xếp 5 người vào năm vị trí: có 5! cách xếp.

    Ở vị trí cờ của Hàn Quốc xếp 2 người vào hai vị trí: có 2! cách xếp.

    Ở vị trí cờ của Ấn Độ xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Thái Lan xếp 4 người vào bốn vị trí: có 4! cách xếp.

    Áp dụng quy tắc nhân, có tất cả: 4!.3!.5!.2!.3!.4! = 4976640 cách

  • Câu 7: Vận dụng

    Có bao nhiêu số tự nhiên gồm 5 chữ số thỏa mãn

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 8: Nhận biết

    Tính số cách thực hiện công việc

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a.b (cách).

  • Câu 9: Vận dụng

    Tổng số nguyên dương n thỏa mãn là

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 10: Vận dụng

    Tìm hệ số của số hạng

    Hệ số của x^{5} trong khai triển thành đa thức của (2 - 3x)^{2n} bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn: C_{2n + 1}^{0} + C_{2n +
1}^{2} + C_{2n + 1}^{4} + ... + C_{2n + 1}^{2n} = 1024.

    Ta có (x + 1)^{2n + 1} = C_{2n +
1}^{0}.x^{2n + 1} + C_{2n + 1}^{1}.x^{2n} + ... + C_{2n + 1}^{2n}.x +
C_{2n + 1}^{2n + 1} (1)

    Thay x = 1 vào (1): 2^{2n +
1} = C_{2n + 1}^{0} + C_{2n + 1}^{1} + ... + C_{2n + 1}^{2n} + C_{2n +
1}^{2n + 1} (2)

    Thay x = - 1 vào (1): 0 = -
C_{2n + 1}^{0} + C_{2n + 1}^{1} - ... - C_{2n + 1}^{2n} + C_{2n + 1}^{2n
+ 1} (3)

    Phương trình (2) trừ (3) theo vế: 2^{2n + 1} = 2\left( C_{2n + 1}^{0} + C_{2n +
1}^{2} + ... + C_{2n + 1}^{2n} ight).

    Theo đề ta có 2^{2n + 1} = 2.1024
\Leftrightarrow n = 5

    Số hạng tổng quát của khai triển (2 -
3x)^{10}:

    T_{k + 1} = C_{10}^{k}.2^{10 - k}.( -
3x)^{k} = C_{10}^{k}.2^{10 - k}.( - 3)^{k}.x^{k}

    Theo giả thiết ta có k = 5.

    Vậy hệ số cần tìm C_{10}^{5}.2^{5}.( -
3)^{5} = - 1959552.

  • Câu 11: Nhận biết

    Xác định số hạng không chứa x trong khai triển

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 12: Thông hiểu

    Tìm số hạng

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 13: Nhận biết

    Chọn số cách chọn học sinh

    Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?

    Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.

  • Câu 14: Thông hiểu

    Tìm n

    Biết hệ số của x^{2} trong khai triển của (1 - 3x)^{n}90. Tìm n.

    Số hạng thứ k + 1 trong khai triển của (1 - 3x)^{n} là: T_{k + 1} = C_{n}^{k}( - 3)^{k}x^{k}.

    Số hạng chứa x^{2} ứng với k = 2.

    Ta có: C_{n}^{2}( - 3)^{2} = 90
\Leftrightarrow C_{n}^{2} = 10 (với n \geq 2; n
\in \mathbb{N})

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
10 \Leftrightarrow n(n - 1) = 20 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 5 \\
n = - 4(L) \\
\end{matrix} ight.. Vậy n =
5.

  • Câu 15: Nhận biết

    Xác định hệ số theo yêu cầu

    Trong khai triển nhị thức Newton (3x - 2)^{5}, hệ số của số hạng chứa x^{3} bằng:

    Hệ số của số hạng chứa x^{3} trong khai triển (3x - 2)^{5} là: C_{5}^{3}.3^{3}.( - 2)^{2} =
1080.

  • Câu 16: Nhận biết

    Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

    Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

    Mỗi hành khách có 4 cách chọn toa.

    Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.

  • Câu 17: Thông hiểu

    Tính số cách chọn học sinh

    Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?

    Số cách chọn một bạn nam là: 7 cách

    Số cách chọn một bạn nữ là: 4 cách

    Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: 7.4 = 28 cách chọn.

  • Câu 18: Nhận biết

    Số các chỉnh hợp chập k của n phần tử

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 19: Thông hiểu

    Tính số cách chọn thành viên

    Một dạ tiệc có 10 nam và 6 nữ giỏi khiêu vũ. Người ta chọn 3 nam và 3 nữ để ghép thành 3 cặp. Hỏi có bao nhêu cách chọn?

    Chọn 3 nam trong 10 nam có C_{10}^{3} cách.

    Chọn 3 nữ trong 6 nữ có C_{6}^{3} cách.

    Ghép 3 nam và 3 nữ để thành 3 cặp có 3! cách.

    Theo quy tắc nhân có: C_{10}^{3}.C_{6}^{3}.3! = 14400 cách chọn.

  • Câu 20: Vận dụng

    Có bao nhiêu số tự nhiên thỏa mãn

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

  • Câu 21: Thông hiểu

    Số các số tự nhiên được tạo thành

    Có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    Có 9 cách chọn a

    Có 9 cách chọn b

    Có 8 cách chọn c

    => Số các số được tạo thành là: 9.9.8
= 648 số.

  • Câu 22: Nhận biết

    Tính số tập hợp con

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.

    => Số tập hợp con là: C_{7}^{3} tập hợp

  • Câu 23: Nhận biết

    Có bao nhiêu cách chọn một thực đơn?

    Một người vào một cửa hàng ăn, người đó chọn thực đơn 1 món ăn trong 5 món khác nhau, 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau, 1 loại đồ uống trong 3 loại đồ uống khác nhau. Có bao nhiêu cách chọn một thực đơn?

    Người đó chọn 1 món ăn trong 5 món khác nhau có 5 cách.

    Người đó chọn 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau có 5 cách.

    Người đó chọn 1 loại đồ uống trong 3 loại đồ uống khác nhau có 3 cách.

    Áp dụng quy tắc nhân ta có 5.5.3 = 75cách.

  • Câu 24: Nhận biết

    Xác định hệ số của số hạng

    Hệ số x^{4} trong khai triển nhị thức (3x - 4)^{5} bằng:

    Hệ số của x^{4} trong khai triển (3x - 4)^{5} là: C_{5}^{1}.(3x)^{4}.( - 4)^{1} = -
1620.

  • Câu 25: Thông hiểu

    Tìm n

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 26: Vận dụng

    Có bao nhiêu số tự nhiên thỏa mãn

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 27: Nhận biết

    Chọn khai triển chính xác

    Khai triển nhị thức Newton \left( x^{2} - y ight)^{5} ta được kết quả là:

    Ta có:

    \left( x^{2} - y ight)^{5} = \sum_{k =
0}^{5}{C_{5}^{k}.\left( x^{2} ight)^{5 - k}.( - y)^{k}}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}.\left( x^{2} ight)^{4}( - y) + C_{5}^{2}.\left( x^{2}
ight)^{3}( - y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}( -
y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}( - y)^{4} + C_{5}^{5}.\left(
x^{2} ight)^{0}( - y)^{5}

    = x^{10} - 5x^{8}y + 10x^{6}y^{2} -
10x^{4}y^{3} + 5x^{2}y^{4} - y^{5}

  • Câu 28: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ?

    Xếp 4 học sinh nam thành hàng dọc có 4! cách xếp.

    Giữa 4 học sinh nam có 5 khoảng trống ta xếp các bạn nữ vào vị trí đó nên có 5! cách xếp.

    Theo quy tắc nhân có 4!5! = 2880 cách xếp thoả mãn.

  • Câu 29: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?

    +) Xếp 5 bạn vào 5 chỗ ngồi có 5! cách.

    +) Xếp An và Dũng ngồi cạnh nhau có 2 cách. Xem An và Dũng là 1 phần tử cùng với 3 bạn còn lại là 4 phần tử xếp vào 4 chỗ. Suy ra số cách xếp 5 bạn sao cho An và Dũng luôn ngồi cạnh nhau là. 2.4! cách.

    Vậy số cách xếp 5 bạn vào 5 ghế sao cho An và Dũng không ngồi cạnh nhau là.

    5!–2.4! = 72.

  • Câu 30: Thông hiểu

    Giải phương trình và tính tổng nghiệm

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 31: Nhận biết

    Hỏi có bao nhiêu cách sắp xếp

    Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?

    Vì các sách Văn phải xếp kề nhau nên ta xem 5 cuốn sách Văn là một phần tử.

    Xếp 7 cuốn sách toán lên kệ có 7! cách.

    Giữa 7 cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa 5 cuốn sách Văn vào 8 vị trí đó có 8 cách.

    5 cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được 5! cách.

    Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. 8.7!.5! = 8!.5!.

  • Câu 32: Nhận biết

    Xác định số cách chọn áo

    Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?

    Áo cỡ 39 có 5 cách chọn

    Áo cỡ 40 có 4 cách chọn

    Vậy có tất cả 5 + 4 = 9cách chọn về màu và cỡ áo.

  • Câu 33: Nhận biết

    Chọn số cách sắp xếp chính xác

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

  • Câu 34: Nhận biết

    Điền đáp án vào ô trống

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 35: Nhận biết

    Tìm số hạng thỏa mãn

    Số hạng chứa x^{4} trong khai triển biểu thức (2x + 3)^{5} là:

     Ta có: (2x+3)^5=32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243.

    Số hạng cần tìm là: 240x^{4}.

  • Câu 36: Vận dụng

    Tìm tham số n thỏa mãn yêu cầu

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

  • Câu 37: Thông hiểu

    Tìm số cách chọn tổ công tác

    Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.

    Trường hợp 1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có C_{12}^{6} cách.

    Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có C_{12}^{5} cách

    Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có C_{12}^{5} cách.

    Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng

    Như vậy có tất cả số cách là: \left(
C_{12}^{6} + C_{12}^{5} + C_{12}^{5} ight).6 = 15048 cách

  • Câu 38: Thông hiểu

    Chọn kết quả chính xác

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 39: Thông hiểu

    Có bao nhiêu số tự nhiên được tạo thành

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng (300;500)?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a eq 0)

    Số cần tìm thuộc khoảng (300;500) nên a \in \left\{ 3;4 ight\}=> a có 2 cách chọn.

    Số cách chọn b là 5 cách chọn

    Số cách chọn c là 4 cách chọn

    Vậy có thể lập được 2.5.4 =
40(số) thỏa mãn yêu cầu đề bài.

  • Câu 40: Vận dụng

    Tìm số hạng thỏa mãn

    Tìm số hạng chứa x^{26} trong khai triển \left( \frac{1}{x^{4}} + x^{7}
ight)^{n}. Cho biết n là số nguyên dương thỏa mãn hệ thức C_{2n +
1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} = 2^{20} -
1.

    Từ giả thiết ta suy ra C_{2n + 1}^{0} +
C_{2n + 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} =
2^{20}.

    Mặt khác: C_{2n + 1}^{k} = C_{2n + 1}^{2n
+ 1 - k}\ \ ,\ \forall k\mathbb{\in N},\ 0 \leq k \leq 2n + 1 nên ta có:

    C_{2n + 1}^{0} + C_{2n + 1}^{1} + C_{2n +1}^{2} + ... + C_{2n + 1}^{n}

    = \frac{1}{2}\left( C_{2n + 1}^{0} + C_{2n+ 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{2n + 1} ight) =\frac{1}{2}(1 + 1)^{2n + 1} = 2^{2n}

    Suy ra: 2^{2n} = 2^{20} \Leftrightarrow n
= 10.

    Số hạng tổng quát trong khai triển \left(
\frac{1}{x^{4}} + x^{7} ight)^{10}là: T_{k + 1} = C_{10}^{k}\left( \frac{1}{x^{4}}
ight)^{10 - k}\left( x^{7} ight)^{k} = C_{10}^{k}x^{11k -
40}.

    Hệ số của x^{26}C_{10}^{k} với k thỏa mãn: 11k - 40 = 26 \Leftrightarrow k = 6.

    Vậy hệ số của x^{26}C_{10}^{6} = 210.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo