Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 6 Thống kê sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tìm tứ phân vị dưới

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 2: Nhận biết

    Tìm mốt của mẫu số liệu số liệu không ghép nhóm

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 3: Thông hiểu

    Tính số trung bình cộng

    Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

    Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)

    Lớp 10B có: 5 + 7 + 10 + 8 + 6 =
36 (bạn).

    Thời gian chạy trung bình của các bạn là:

    \overline{x} =\frac{5.12 + 7.13 + 10.14 + 8.15 +6.16}{36}\approx 14,083 (giây).

  • Câu 4: Vận dụng

    Chọn kết luận đúng.

    Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được: Q_{1} =
26,Q_{2} = 60,Q_{3} = 100. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 100 - 26 = 74.

    Khoảng biến thiên R = 120 - 20 =
100.

    Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:

    Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.

  • Câu 5: Nhận biết

    Xác định giá trị khoảng biến thiên

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 6: Nhận biết

    Tìm mốt của mẫu số liệu

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 7: Nhận biết

    Chọn đáp án đúng

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 8: Vận dụng

    Chọn kết luận đúng.

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

  • Câu 9: Nhận biết

    Chọn khẳng định sai

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 11: Nhận biết

    Tìm số quy tròn của số gần đúng

    Cho số a = 367\
653\ 964\  \pm 213. Số quy tròn của số gần đúng 367\ 653\ 964 là:

    Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: 367\
654\ 000.

  • Câu 12: Thông hiểu

    Tính tứ phân vị thứ ba

    Cho mẫu số liệu: 27;15;18;30;19;40;100;9;46;10;200. Tứ phân vị thứ ba của mẫu số liệu là:

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:

    9;10;15;18;19;27;30;40;46;100;200

    Tứ phân vị thứ ba là trung vị của mẫu 30;40;46;100;200

    Do đó Q_{3} = 46.

  • Câu 13: Thông hiểu

    Viết số gần đúng

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 14: Thông hiểu

    Tìm phương sai của bảng số liệu

    Cho bảng thống kê sản lượng lúa (đơn vị: ha) của các thửa ruộng có cùng diện tích trong tỉnh A như sau:

    Sản lượng

    20

    21

    22

    23

    24

    Số thửa ruộng

    5

    8

    11

    10

    6

    Tìm phương sai của bảng số liệu?

    Số thửa ruộng được thống kê sản lượng là:

    N = 5 + 8 + 11 + 10 + 6 =
40

    Sản lượng lúa trung bình của 40 thửa ruộng là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Phương sai của sản lượng lúa của 40 thửa ruộng là:

    S^{2} = \frac{5.20^{2} + 8.21^{2} +
11.22^{2} + 10.23^{2} + 6.24^{2}}{40} - 22,1^{2} = 1,54

  • Câu 15: Nhận biết

    Xác định mốt của mẫu số liệu

    Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:

    Khối lượng (gram)

    25

    30

    35

    40

    45

    50

    Số quả trứng

    3

    5

    7

    9

    4

    2

    Xác định mốt của mẫu số liệu?

    Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).

  • Câu 16: Vận dụng

    Chọn kết luận đúng

    Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau: h_{1} = 10,23 \pm 0,43(m), h_{2} = 10,58 \pm 0,2(m), h_{3} = 9,92 \pm 0,63(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?

    Phép đo lần 1 có sai số tương đối \delta_{1} \leq \frac{0,43}{10,23} \approx 0,042 =
4,2\%.

    Phép đo lần 2 có sai số tương đối \delta_{2} \leq \frac{0,2}{10,58} \approx 0,0189 =
1,89\%.

    Phép đo lần 3 có sai số tương đối \delta_{3} \leq \frac{0,63}{9,92} \approx 0,0635 =
6,35\%.

    Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn h_{2} làm chiều cao của ngôi nhà.

  • Câu 17: Nhận biết

    Xác định mốt của mẫu số liệu

    Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau: 350;300;650;300;450;500;300;250. Mốt của mẫu số liệu này là:

    Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra M_{0} = 300.

  • Câu 18: Thông hiểu

    Tính số trung vị của mẫu số liệu

    Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:

    Ta có: n=10 là một số chẵn

    => Số trung vị là: {M_e} = \frac{{{x_5} + {x_6}}}{2}

    Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.

  • Câu 19: Vận dụng

    Viết chuẩn của diện tích toàn phần sau quy tròn

    Một hình lập phương có cạnh là 2,4m \pm
1cm. Cách viết chuẩn của diện tích toàn phần (sau khi quy tròn) là:

    Gọi a là độ dài cạnh của hình lập phương thì a = 2,4m \pm 1cm

    \Rightarrow2,39m \leq a \leq 2,41m.

    Khi đó diện tích toàn phần của hình lập phương là S = 6a^{2} nên 34,2726 \leq S \leq 34,8486.

    Do đó S = 34,5606m^{2} \pm
0,288m^{2}.

  • Câu 20: Nhận biết

    Tính số trung bình cộng của mẫu số liệu

    Điểm thi học kì của một học sinh như sau: 4  6  7  2  10  9  3  5  8  7  3  8.

    Tính số trung bình cộng của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{4 + 6 + 7.2 + 2 + 10 + 9 + 3.2 + 5 + 8.2}}{{12}} = 6.

  • Câu 21: Thông hiểu

    Viết kết quả dưới dạng kí hiệu khoa học

    Các nhà khoa học Mỹ đang nghiên cứu liệu một máy bay có thể có tốc độ gấp bảy lần tốc độ ánh sáng. Với máy bay đó trong một năm (giả sử một năm có 365 ngày) nó bay được bao nhiêu? Biết vận tốc ánh sáng là 300 nghìn km/s. Viết kết quả dưới dạng kí hiệu khoa học.

    Ta có một năm có 365 ngày, một ngày có 24 giờ, một giờ có 60 phút và một phút có 60 giây.

    Do đó một năm có: 24.365.60.60 = 31536000 giây.

    Vì vận tốc ánh sáng là 300 nghìn km/s nên trong vòng một năm nó đi được

    31536000.300 = 9,4608.10^{9} km.

  • Câu 22: Nhận biết

    Xác định giá trị độ lệch chuẩn

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 23: Thông hiểu

    Tìm phương sai của mẫu số liệu

    Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:

    Học sinh

    An

    Hoa

    Tuấn

    Hùng

    Quân

    Linh

    Điểm

    9

    8

    7

    10

    8

    6

    Tìm phương sai của mẫu số liệu?

    Ta có: N = 6

    Điểm trung bình của các học sinh trong bảng số liệu là:

    \overline{x} = \frac{9 + 8 + 7 + 10 + 8
+ 6}{6} = 8

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    9

    9 – 8 = 1

    1

    8

    8 – 8 = 0

    0

    7

    7 – 8 = -1

    1

    10

    10 – 8 = 2

    4

    8

    8 – 8 = 0

    0

    6

    6 – 8 = -2

    4

    Tổng

    10

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{10}{6} =
\frac{5}{3}

    Vậy phương sai cần tìm là \frac{5}{3}.

  • Câu 24: Nhận biết

    Quy tròn số

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 25: Thông hiểu

    Chọn phương án thích hợp

    Theo thống kê, dân số Việt Nam năm 2002 là 79715675 người. Giả sử sai số tuyệt đối của thống kê này không vượt quá 10000 người, hãy viết số trên dưới dạng chuẩn và ước lượng sai số tương đối của số liệu thống kê trên.

    Vì các chữ số đáng tin là 7; 9; 7. Dạng chuẩn của số đã cho là 797.10^{5} (Bảy mươi chín triệu bảy trăm nghìn người).

    Sai số tương đối mắc phải là:

    \delta_{a} = \frac{\Delta a}{a} =
\frac{10000}{79715675} = 0,0001254

  • Câu 26: Thông hiểu

    Xác định sai số tuyệt đối

    Cho số x = \frac{2}{7} và các giá trị gần đúng của x0,28\ ;\ 0,29\ ;\ 0,286\ ;\ 0,3. Hãy xác định sai số tuyệt đối trong từng trường hợp và cho biết giá trị gần đúng nào là tốt nhất.

    Ta có các sai số tuyệt đối là

    \Delta_{a} = \left| \frac{2}{7} - 0,28
\right| = \frac{1}{175}, \Delta_{b}
= \left| \frac{2}{7} - 0,29 \right| = \frac{3}{700}, \Delta_{c} = \left| \frac{2}{7} - 0,286 \right| =
\frac{1}{3500}, \Delta_{d} = \left|
\frac{2}{7} - 0,3 \right| = \frac{1}{70}.

    \Delta_{c} < \Delta_{b} <
\Delta_{a}\  < \Delta_{d} nên c = 0,286 là số gần đúng tốt nhất.

  • Câu 27: Nhận biết

    Chọn đáp án đúng

    Số quy tròn của a = 15,31828 \pm 0,001 với độ chính xác đã cho là:

    Số quy tròn của số a = 15,31828 \pm
0,001 là: 15,32.

  • Câu 28: Vận dụng

    Tìm trung vị

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm trung vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.

    Vậy trung vị M_{e} = 3.

  • Câu 29: Nhận biết

    Tính số trung bình cộng

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 30: Nhận biết

    Chọn kết luận đúng

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 31: Nhận biết

    Tính sai số tương đối

    Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {a = 1,1} \\   {d = 0,01} \end{array}} ight.

    Sai số tương đối của dung tích nồi cơm điện là: 

    \delta  \leqslant \frac{d}{{\left| a ight|}} = \frac{{0,01}}{{1,1}} \approx 0,909\%  < 1\%

    Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%

  • Câu 32: Nhận biết

    Tìm số gần đúng của a

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 33: Thông hiểu

    Chọn kết luận đúng

    Bảng dưới đây thống kê điểm của An và Bình:

    Dựa vào khoảng biến thiên thì bạn nào học đều hơn?

    Khoảng biến thiên điểm của bạn An là R_{1} = 9,5 - 6,5 = 3.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 8,3 - 7,6 = 0,7.

    R_{2} < R_{1} nên Bình học đều hơn.

  • Câu 34: Nhận biết

    Tính phương sai

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 35: Nhận biết

    Tìm độ chính xác của phép đo

    Độ cao của một ngọn núi được ghi lại như sau \overline{h} = 1372,5\ m \pm 0,2\ m. Độ chính xác d của phép đo trên là

    Độ chính xác d = 0,2\ m

  • Câu 36: Thông hiểu

    Phát biểu nào sau đây sai

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 37: Nhận biết

    Tính sai số tuyệt đối

    Đo chiều dài của một cây thước, ta được kết quả \overline{a} = 45 \pm 0,3\ (cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là

    Ta có độ dài dài gần đúng của cây thước là a = 45 với độ chính xác d = 0,3

    Nên sai số tuyệt đối \Delta_{45} \leq d =
0,3

  • Câu 38: Thông hiểu

    Tìm sai số tương đối

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m. Tìm sai số tương đối của phép đo chiều dài cây cầu.

    Phép đo cây cầu có sai số tương đối thỏa mãn \delta < \frac{0,2}{152} \approx
0,1316\%.

  • Câu 39: Thông hiểu

    TÌm khoảng tứ phân vị

    Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.

    Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280

    Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra   {Q_2} = \frac{{225 + 235}}{2} = 230.

    Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra Q_1=220.

    Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra Q_3=250.

    Khoảng tứ phân vị: \Delta_Q=250-220=30.

  • Câu 40: Thông hiểu

    Tìm độ lệch chuẩn của mẫu số liệu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo