Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Hàm số bậc hai và đồ thị Sách CTST

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 3 Hàm số bậc hai và đồ thị sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    Điều kiện xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    x \geqslant 0

    => Tập xác định của hàm số là: D = [0; +∞)

  • Câu 2: Nhận biết

    Tìm giá trị nhỏ nhất

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 3: Thông hiểu

    Tính giá trị biểu thức S

    Cho hàm số bậc hai y = ax^{2} + bx + c;(a eq 0) có đỉnh I( - 1;4) và đi qua điểm M( - 2;5). Xác định giá trị biểu thức S = a + b + c?

    Parabol có đỉnh I( - 1;4)

    \Leftrightarrow \left\{ \begin{matrix}- \dfrac{b}{2a} = - 1 \\4 = a.( - 1)^{2} + b.( - 1) + c \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a - b = 0 \\a - b + c = 4 \\\end{matrix} ight.(*)

    Parabol đi qua điểm M( - 2;5) suy ra

    5 = a( - 2)^{2} + b.( - 2) +
c

    \Leftrightarrow 4a - 2b + c =
5(**)

    Từ (*) và (**) ta có hệ phương trình

    \left\{ \begin{matrix}
2a - b = 0 \\
a - b + c = 4 \\
4a - 2b + c = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 5 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = 1 + 2 + 5 =
8

  • Câu 4: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 5: Vận dụng

    Chọn khẳng định đúng

    Cho hai đường thẳng \left( d_{1} ight):y = \frac{1}{2}x + 100\left( d_{2} ight):y = - \frac{1}{2}x +
100. Mệnh đề nào sau đây đúng?

    Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)(d2). Khi đó k_{1} = \frac{1}{2},\ k_{2} = - \frac{1}{2}
\Rightarrow k_{1}.k_{2} = - \frac{1}{4} nên (d1)(d2) không vuông góc nhau.

    Xét hệ: \left\{ \begin{matrix}
y = \frac{1}{2}x + 100 \\
y = - \frac{1}{2}x + 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- \frac{1}{2}x + y = 100 \\
\frac{1}{2}x + y = 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 100 \\
\end{matrix} ight.

    Vậy (d1)(d2) cắt nhau.

    Cách 2: Ta thấy \frac{1}{2} eq -
\frac{1}{2} nên (d1)(d2) cắt nhau.

  • Câu 6: Vận dụng cao

    Chọn khẳng định đúng

    Một hộ nông dân định trồng đậu và cà trên diện tích 800m2. Nếu trồng đậu thì cần 20 công và thu 3.000.000 đồng trên 100m2 nếu trồng cà thì cần 30 công và thu 4.000.000 đồng trên 100 m2 Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được nhiều tiền nhất khi tổng số công không quá 180. Hãy chọn phương án đúng nhất trong các phương án sau:

    Gọi x là số x00 m2 đất trồng đậu, y là số y00 m2 đất trồng cà. Điều kiện x ≥ 0, y ≥ 0.

    Số tiền thu được là T = 3x + 4y triệu đồng.

    Theo bài ra ta có \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Đồ thị:

    Dựa đồ thị ta có tọa độ các đỉnh A(0;6), B(6;2), C(8;0), O(0;0).

    Thay vào T = 3x + 4y ta được Tmax = 26 triệu khi trồng 600m2 đậu và 200 m2 cà.

  • Câu 7: Thông hiểu

    Tìm số các giá trị nguyên của m

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 8: Nhận biết

    Tìm hàm số đồng biến

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 9: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 10: Nhận biết

    Tìm trục đối xứng

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 11: Nhận biết

    Tìm hệ số góc

    Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng

    Hệ số góc a = 2018.

  • Câu 12: Thông hiểu

    Xác định hàm số bậc hai

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 13: Thông hiểu

    Tìm công thức hàm số bậc hai

    Bảng biến thiên của hàm số y =  − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?

    Hệ số a = - 2 <
0\overset{}{ightarrow} bề lõm hướng xuống.

    Ta có - \frac{b}{2a} = 1y(1) = 3. Do đó chọn .

  • Câu 14: Nhận biết

    Chọn khẳng định đúng

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 15: Thông hiểu

    Tính tổng b + c

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 16: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 17: Thông hiểu

    Xác định hệ thức liên hệ giữa x và y

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu

    Tìm công thức hàm số bậc hai

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 19: Nhận biết

    Hàm số nghịch biến

    Trong các hàm số sau, hàm số nào là nghịch biến:

    Ta có: 

    Hàm số y = f(x) = -2x + 2 có a = -2 < 0

    => Hàm số nghịch biến.

  • Câu 20: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 21: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.

    Đặt t = x2    (t≥0).

    Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)

    Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.

    Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.

    Phương trình (*) có 2 nghiệm âm khi và chỉ khi \left\{ \begin{matrix}
\Delta' = m - 2 \geq 0 \\
S = 2 < 0 \\
P = 3 - m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

    Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥  − 2.

  • Câu 22: Nhận biết

    Tìm parabol thỏa mãn điều kiện

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    Trục đối xứng của (P) có dạng:

    x = - \frac{b}{2a} = - 3 \Leftrightarrow -
\frac{3}{2a} = - 3 \Leftrightarrow - 3 = - 6a \Leftrightarrow a =
\frac{1}{2}.

    Vậy (P) có phương trình: y = \frac{1}{2}x^{2} + 3x - 2.

  • Câu 23: Vận dụng

    Tìm giá trị của m thỏa mãn

    Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng

    + Gọi M là giao điểm của d1d2.

    Xét hệ: \left\{ \begin{matrix}
y = 2x - 1 \\
y = 8 - x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 2x + y = - 1 \\
x + y = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 5 \\
\end{matrix} ight.\  \Rightarrow M(3;5).

    + M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.

  • Câu 24: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng  − 3.

    Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

    Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.

    Theo giả thiết 2m + 3 =  − 3 ⇔ m =  − 3.

  • Câu 25: Vận dụng

    Tính quãng đường di chuyển của vật

    Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8 m/s^{2}, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.

    Gọi vận tốc ban đầu của vật là v_0 = 12 m/s.

    Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.

    Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:

    s = {v_0}t + \frac{1}{2}g{t^2}

    Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.

    Ta có hàm số: s = f\left( t ight) = 12t + \frac{1}{2}.9,8.{t^2} = 12t + 4,9{t^2}

    Khi t = 7 thì vật đã rơi được quãng đường là:

    s = f(7) = 12.7 + 4,9. 72 = 324,1 (m).

  • Câu 26: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

    Phương trình f(x) + m - 2018 =
0\overset{}{\leftrightarrow}f(x) = 2018 - m. Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.

  • Câu 27: Vận dụng cao

    Chọn khẳng định đúng

    Bằng phép tịnh tiến, từ đồ thị hàm số y =  − 2x2suy ra đồ thị hàm số y =  − 2x2 − 6x + 3 như thế nào?

    Xét f(x) = - 2x^{2} - 6x + 3 = - 2\left(
x^{2} + 3x - \frac{3}{2} ight)

    = - 2\left\lbrack \left( x + \frac{3}{2}
ight)^{2} - \frac{15}{4} ightbrack = - 2\left( x + \frac{3}{2}
ight)^{2} + \frac{15}{2}

    Do đó tịnh tiến đồ thị hàm số y =  − 2x2 để được đồ thị hàm số y =  − 2x2 − 6x + 3 ta làm như sau:

    Tịnh tiến liên tiếp đồ thị hàm số y =  − 2x2 đi sang bên trái \frac{3}{2} đơn vị và lên trên đi \frac{15}{2} đơn vị.

  • Câu 28: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số f(x) =
\sqrt{2x - 7}. Khẳng định nào sau đây đúng?

    TXĐ : D = \left\lbrack \frac{7}{2}; +
\infty ight) nên ta loại đáp án C và D.

    Xét f\left( x_{1} ight) - f\left( x_{2}
ight) = \sqrt{2x_{1} - 7} - \sqrt{2x_{2} - 7} = \frac{2\left( x_{1} -
x_{2} ight)}{\sqrt{2x_{1} - 7} + \sqrt{2x_{2} - 7}}.

    Với mọi x_{1},\ x_{2} \in \left(
\frac{7}{2}; + \infty ight)x1 < x2, ta có \frac{f\left( x_{1} ight) - f\left(
x_{2} ight)}{x_{1} - x_{2}} = \frac{2}{\sqrt{2x_{1} - 7} +
\sqrt{2x_{2} - 7}} > 0.

    Vậy hàm số đồng biến trên \left(
\frac{7}{2}; + \infty ight).

  • Câu 29: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 30: Nhận biết

    Chọn khẳng định đúng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2)(2; +∞). Khẳng định nào sau đây đúng?

    Xét f(x) = x2 − 4x + 5.

    TXĐ: D = ℝ.

    Tọa độ đỉnh I(2; 1).

    Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).

  • Câu 31: Thông hiểu

    Tìm tập xác định

    Cho hàm số: y =
\left\{ \begin{matrix}
\frac{1}{x - 1} & x \leq 0 \\
\sqrt{x + 2} & x > 0 \\
\end{matrix} ight.. Tập xác định của hàm số là tập hợp nào sau đây?

    Với x ≤ 0 ta có: y = \frac{1}{x - 1} xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.

    Với x > 0 ta có: y = \sqrt{x + 2} xác định với mọi x ≥  − 2 nên xác định với mọi x > 0.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 32: Nhận biết

    Xác định hàm số bậc hai

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 33: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 34: Thông hiểu

    Tính giá trị của S

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 35: Thông hiểu

    Tính giá trị của P

    Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4}. Tính tích P = ab.

    (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4} nên ta có hệ

    \left\{ \begin{matrix}
a - b + 2 = 6 \\
- \frac{\Delta}{4a} = - \frac{1}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - b = 4 \\
b^{2} - 4ac = a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 8(4 + b) = 4 + b \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 9b - 36 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 16 \\
b = 12 \\
\end{matrix} ight. (thỏa mãn a > 1) hoặc \left\{ \begin{matrix}
a = 1 \\
b = - 3 \\
\end{matrix} ight. (loại).

    Suy ra P = ab = 16.12 = 192.

  • Câu 36: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số f(x) = \sqrt{3 - x} + \frac{1}{\sqrt{x -
1}}

    Hàm số xác định khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x \leq 3.

    Vậy tập xác định của hàm số là D = (1; 3].

  • Câu 37: Nhận biết

    Tìm hàm số nghịch biến

    Trong các hàm số sau, hàm số nào nghịch biến trên ?

    Hàm số y = ax + b với a ≠ 0 nghịch biến trên khi và chỉ khi a < 0.

  • Câu 38: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 39: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 0 \\
\end{matrix} ight.. Vậy tập xác định: D = [ − 1;  + ∞) ∖ {0}.

  • Câu 40: Nhận biết

    Tìm điều kiện của m thỏa mãn

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số bậc hai và đồ thị Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo