Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Hàm số bậc hai và đồ thị Sách CTST

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 3 Hàm số bậc hai và đồ thị sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn nhận xét đúng

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 2: Nhận biết

    Tìm điều kiện của m thỏa mãn

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 3: Vận dụng

    Chọn đáp án đúng

    Cho parabol (P):y=ax^{2}+bx+c (aeq 0). Xét dấu hệ số a và biệt thức \Delta khi (P) hoàn toàn nằm phía trên trục hoành.

     Khi đồ thị hàm số hoàn toàn nằm phía trên trục hoành thì phương trình y=0 vô nghiệm Suy ra \Delta <0a>0 (bề lõm hướng lên trên).

     

  • Câu 4: Thông hiểu

    Tính tỉ lệ biết chữ của phụ nữ

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 5: Vận dụng

    Chọn khẳng định đúng

    Cho hàm số f(x) =
\sqrt{2x - 7}. Khẳng định nào sau đây đúng?

    TXĐ : D = \left\lbrack \frac{7}{2}; +
\infty ight) nên ta loại đáp án C và D.

    Xét f\left( x_{1} ight) - f\left( x_{2}
ight) = \sqrt{2x_{1} - 7} - \sqrt{2x_{2} - 7} = \frac{2\left( x_{1} -
x_{2} ight)}{\sqrt{2x_{1} - 7} + \sqrt{2x_{2} - 7}}.

    Với mọi x_{1},\ x_{2} \in \left(
\frac{7}{2}; + \infty ight)x1 < x2, ta có \frac{f\left( x_{1} ight) - f\left(
x_{2} ight)}{x_{1} - x_{2}} = \frac{2}{\sqrt{2x_{1} - 7} +
\sqrt{2x_{2} - 7}} > 0.

    Vậy hàm số đồng biến trên \left(
\frac{7}{2}; + \infty ight).

  • Câu 6: Nhận biết

    Chọn khẳng định sia

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 7: Vận dụng cao

    Tìm miền giá trị của hàm số

    Miền giá trị của hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} + 1}

    Cách 1: Do  x2 + 1 > 0; ∀x ∈ ℝ nên hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} +
1} xác định với mọi x ∈ ℝ

    Gọi y0 là giá trị tùy ý, ta có phương trình:

    \frac{3x^{2} + 2x + 3}{x^{2} + 1} =
y_{0} \Leftrightarrow 3x^{2} + 2x + 3 = y_{0}\left( x^{2} + 1 ight)
\Leftrightarrow 3x^{2} + 2x + 3 = y_{0}x^{2} + y_{0}

     ⇔ (3−y0)x2 + 2x + 3 − y0 = 0(1)

    + Nếu y0 = 3 thì phương trình (1)trở thành: 2x = 0 ⇔ x = 0.

    Vậy phương trình (1)có nghiệm y0 = 3(*).

    + Nếu y0 ≠ 3 thì phương trình (1)là phương trình bậc hai, nên nó có nghiệm khi và chỉ khi

    Δ′ = 12 − (3−y0)2 ≥ 0

     ⇔  − y02 + 6y0 − 8 ≥ 0

     ⇔ 2 ≤ y0 ≤ 4.

    Vậy phương trình (1)có nghiệm \Leftrightarrow \left\{ \begin{matrix}
2 \leq y_{0} \leq 4 \\
y_{0} eq 3 \\
\end{matrix} ight.\ (**).

    + Kết hợp (*), (**) thì phương trình (1)có nghiệm  ⇔ 2 ≤ y0 ≤ 4.

    Vậy: Miền giá trị của hàm số y =
\frac{3x^{2} + 2x + 3}{x^{2} + 1}[2; 4].

    Cách 2: Ta có \begin{matrix}
\frac{3x^{2} + 2x + 3}{x^{2} + 1} = \frac{x^{2} + 2x + 1 + x^{2} +
2}{x^{2} + 1} = \frac{(x + 1)^{2} + 2\left( x^{2} + 1 ight)}{x^{2} +
1} = 2 + \frac{(x + 1)^{2}}{x^{2} + 1} \geq 2 \\
\\
\end{matrix}

    Suy ra GTNN của A = 2 khi và chỉ khi x =  − 1.

    Mặt khác \frac{3x^{2} + 2x + 3}{x^{2} + 1}
= \frac{- x^{2} + 2x - 1 + 4x^{2} + 4}{x^{2} + 1} = \frac{- (x - 1)^{2}
+ 4\left( x^{2} + 1 ight)}{x^{2} + 1} = 4 - \frac{(x - 1)^{2}}{x^{2} +
1} \leq 4

    Suy ra GTLN của A = 4 khi và chỉ khi x = 1.

    Vậy miền giá trị của hàm số là [2; 4].

  • Câu 8: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 9: Nhận biết

    Tìm công thức của Parabol

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 10: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = f(x) = \left\{ \begin{matrix}
\sqrt{- 3x + 8} + x & khi & x < 2 \\
\sqrt{x + 7} + 1 & khi & x \geq 2 \\
\end{matrix} ight.

    Ta có :

    • Khi x < 2: y = f(x) = \sqrt{- 3x + 8} + x xác định khi - 3x + 8 \geq 0 \Leftrightarrow x \leq
\frac{8}{3}.

    Suy ra D1 = (−∞;2).

    • Khi x ≥ 2: y = f(x) = \sqrt{x + 7} + 1 xác định khi x + 7 ≥ 0 ⇔ x ≥  − 7.

    Suy ra D1 = [2;  + ∞).

    Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.

  • Câu 11: Vận dụng

    Cửa hàng bán một đôi giày giá bao nhiêu

    Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

    Gọi y là số tiền lãi của cửa hàng bán giày.

    Ta có y = (120−x)(x−40) =  − x2 + 160x − 4800 =  − (x−80)2 + 1600 ≤ 1600.

    Dấu " = " xảy ra  ⇔ x = 80.

    Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.

  • Câu 12: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.

    Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).

    Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1

     ⇔ (1)2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
m^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m = \pm 2 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 13: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số f(x) = \sqrt{3 - x} + \frac{1}{\sqrt{x -
1}}

    Hàm số xác định khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x \leq 3.

    Vậy tập xác định của hàm số là D = (1; 3].

  • Câu 14: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 15: Vận dụng

    Chọn khẳng định đúng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = \frac{x - 3}{x + 5} trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( \frac{x_{1} - 3}{x_{1} + 5} ight) - \left(
\frac{x_{2} - 3}{x_{2} + 5} ight) = \frac{\left( x_{1} - 3
ight)\left( x_{2} + 5 ight) - \left( x_{2} - 3 ight)\left( x_{1} +
5 ight)}{\left( x_{1} + 5 ight)\left( x_{2} + 5 ight)} =
\frac{8\left( x_{1} - x_{2} ight)}{\left( x_{1} + 5 ight)\left(
x_{2} + 5 ight)}.

    ● Với mọi x1x2 ∈ (−∞;−5)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < - 5 \\
x_{2} < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 < 0 \\
x_{2} + 5 < 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−∞;−5).

    ● Với mọi x1x2 ∈ (−5;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > - 5 \\
x_{2} > - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 > 0 \\
x_{2} + 5 > 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−5;+∞).

    Chọn Hàm số đồng biến trên các khoảng (−∞;−5)(−5;+∞).

  • Câu 16: Thông hiểu

    Tìm công thức Parabol

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.

    Ta có M \in (P)\overset{}{ightarrow}c =
4.

    Trục đối xứng - \frac{b}{2a} =
1\overset{}{ightarrow}b = - 4.

    Vậy (P) : y = 2x2 − 4x + 4.

  • Câu 17: Nhận biết

    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = \sqrt{x - 1} là:

    Hàm số y = \sqrt{x - 1} xác định  ⇔ x − 1 ≥ 0  ⇔ x ≥ 1.

  • Câu 18: Nhận biết

    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    Điều kiện xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    x \geqslant 0

    => Tập xác định của hàm số là: D = [0; +∞)

  • Câu 19: Vận dụng

    Tìm đồ thị hàm số phù hợp

    Đồ thị của hàm số y = \frac{2}{3}x + \frac{1}{3}

    Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.

    Mặt khác cho x = 0 vào y = \frac{2}{3}x + \frac{1}{3} =
\frac{1}{3} nên chọn đáp án đồ thị hàm số đi qua điểm \left( 0\ ;\ \frac{1}{3} ight).

  • Câu 20: Vận dụng cao

    Chọn khẳng định đúng

    Một hộ nông dân định trồng đậu và cà trên diện tích 800m2. Nếu trồng đậu thì cần 20 công và thu 3.000.000 đồng trên 100m2 nếu trồng cà thì cần 30 công và thu 4.000.000 đồng trên 100 m2 Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được nhiều tiền nhất khi tổng số công không quá 180. Hãy chọn phương án đúng nhất trong các phương án sau:

    Gọi x là số x00 m2 đất trồng đậu, y là số y00 m2 đất trồng cà. Điều kiện x ≥ 0, y ≥ 0.

    Số tiền thu được là T = 3x + 4y triệu đồng.

    Theo bài ra ta có \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Đồ thị:

    Dựa đồ thị ta có tọa độ các đỉnh A(0;6), B(6;2), C(8;0), O(0;0).

    Thay vào T = 3x + 4y ta được Tmax = 26 triệu khi trồng 600m2 đậu và 200 m2 cà.

  • Câu 21: Nhận biết

    Tìm hàm số nghịch biến

    Trong các hàm số sau, hàm số nào nghịch biến trên ?

    Hàm số y = ax + b với a ≠ 0 nghịch biến trên khi và chỉ khi a < 0.

  • Câu 22: Nhận biết

    Chọn khẳng định sai

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 23: Thông hiểu

    Tìm công thức Parabol

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 24: Nhận biết

    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 25: Nhận biết

    Tìm giá trị nhỏ nhất

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 26: Thông hiểu

    Tìm khoảng đồng biến nghịch biến

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 27: Thông hiểu

    Tính giá trị của S

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 28: Thông hiểu

    Tìm tập xác định

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 29: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 30: Thông hiểu

    Tìm hàm số đồng biến trên khoảng cho trước

    Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ( - 1;1)?

    Hàm số y = x là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số y =
x đồng biến trên tập số thực.

    Vậy hàm số y = x đồng biến trên khoảng ( - 1;1).

  • Câu 31: Nhận biết

    Tìm điểm không thuộc đồ thị

    Xác định điểm không thuộc đồ thị của hàm số y = \frac{1}{2}x^{2}?

    Ta thấy các điểm nằm trên đồ thị của hàm số là: (0;0); (2;2); ( -
2;2).

    Vậy điểm không thuộc đồ thị hàm số đã cho là: (1;2).

  • Câu 32: Thông hiểu

    Xác định tất cả các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 33: Thông hiểu

    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 34: Vận dụng cao

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{2019}{\sqrt[3]{x^{2} - 3x + 2} -
\sqrt[3]{x^{2} - 7}}.

    Hàm số xác định khi \sqrt[3]{x^{2} - 3x +
2} - \sqrt[3]{x^{2} - 7} eq 0 \Leftrightarrow \sqrt[3]{x^{2} - 3x + 2}
eq \sqrt[3]{x^{2} - 7}

     ⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.

    Vậy tập xác định của hàm số là D = ℝ ∖ {3}.

  • Câu 35: Nhận biết

    Tìm trục đối xứng của Parabol

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 36: Nhận biết

    Tìm x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = \sqrt{x + 2} + \sqrt{2 - x} là:

    Điều kiện xác định của hàm số y = \sqrt{x
+ 2} + \sqrt{2 - x} là:

    \left\{ \begin{matrix}
x + 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 2 \leq x \leq 2

    Vậy tập xác định của hàm số đã cho là D =
\lbrack - 2;2brack

  • Câu 37: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 38: Thông hiểu

    Tìm công thức hàm số bậc hai

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 39: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.

    Ta có a = 1 > 0, b =  − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).

  • Câu 40: Nhận biết

    Chọn khẳng định đúng

    Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số bậc hai và đồ thị Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo