Tìm tập xác định
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Đề kiểm tra 45 phút Toán 10 Chương 3 Hàm số bậc hai và đồ thị sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tìm tập xác định
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Xác định hệ thức liên hệ giữa x và y
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Tìm hàm số bậc hai
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Tìm điều kiện của m thỏa mãn
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Tính giá trị hàm số tại điểm
Cho hàm số
. Ta có kết quả nào sau đây đúng?
;
.
Tìm điều kiện của m thỏa mãn
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Tìm công thức của Parabol
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Tìm m để hàm số đồng biến
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Tìm hàm số bậc hai thỏa mãn
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Tìm công thức Parabol
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Tính giá trị hàm số tại điểm
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Chọn khẳng định đúng
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.
Tính giá trị của S
Biết rằng với mọi giá trị thực của tham số m, các đường thẳng dm: y = (m−2)x + 2m − 3 cùng đi qua một điểm cố định là I(a; b). Tính giá trị của biểu thức: S = a + b
Ta có phương trình của đường thẳng đã cho: dm: y = (m−2)x + 2m − 3 = (x+2)m − 2x − 3.
Vì các đường thẳng dm luôn đi qua điểm I nên ta tìm x để m bị triệt tiêu ⇒I(−2; 1) ⇒ S = − 1
Chọn khẳng định đúng
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Tìm a thỏa mãn điều kiện
Các đường thẳng y = − 5(x+1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a là
Gọi d1 : y = − 5x − 5, d2 : y = 3x + a, d3 : y = ax + 3 (a≠3).
Phương trình hoành độ giao điểm của d1 và d2: .
Giao điểm của d1 và d2 là .
Đường thẳng d1, d2 và d3 đồng qui khi A ∈ d3
⇔ a = − 13. (vì a ≠ 3)
Tính giá trị của T
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó T = 3.
Tìm giá trị nhỏ nhất
Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.
y = x2 − 4x + 1 = (x−2)2 − 3 ≥ − 3.
Dấu xảy ra khi và chỉ khi x = 2.
Vậy hàm số đã cho đạt giá trị nhỏ nhất là − 3 tại x = 2.
Tìm parabol thỏa mãn điều kiện
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Tìm x
Cho hàm số:
. Tìm x để ![]()
Ta có:
Vậy x = 3 hoặc x = 0
Tìm công thức của Parabol
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Chọn khẳng định đúng
Cho hàm số
là một hàm số lẻ. Biết rằng
. Khẳng định nào dưới đây là khẳng định đúng?
Tập xác định
Với
Hàm số đã cho là hàm số lẻ khi đó:
Vậy
VD
1
Tìm giá trị lớn nhất
Giá trị lớn nhất của hàm số
bằng:
Ta có
Vậy giá trị lớn nhất của hàm số bằng
.
Tính giá trị P
Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng
tại
và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.
Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng tại
nên ta có
và điểm
thuộc đồ thị
Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9
.
Từ đó ta có hệ
Tìm trục đối xứng
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Chọn đáp án sai
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Đồ thị của hàm số bậc hai
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.
Tính giá trị hàm số tại điểm
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Tính giá trị biểu thức
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Chọn khẳng định sai
Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (−1;1) và (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−1;1) và (2;3).
Trên khoảng (1;2) và (3;5) đồ thị hàm số đi xuống từ trái sang phải
Hàm số nghịch biến trên khoảng (1;2) và (3;5).
Hàm số nghịch biến
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Tìm công thức Parabol
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng − 3.
Vì (P) có đỉnh I(2;−1) nên ta có . (1)
Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng − 3. Suy ra A(0;−3).
Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c = − 3 ⇔ c = − 3. (2)
Từ (1) và (2), ta có .
Vậy .
Tính chiều cao h của Parabol
Một chiếc cổng hình parabol có phương trình
. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

Gọi Avà Blà hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình và cổng có chiều rộng d = 5 mét nên:
AB = 5 và .
Vậy chiều cao của cổng làmét.
Tìm công thức của Parabol
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Tìm tập xác định của hàm số
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Tìm công thức hàm số bậc hai
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng
khi
.
Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 ⇒ c = 1.
(P)có giá trị nhỏ nhất bằng khi
nên:
⇔
.
Vậy (P): y = x2 − x + 1.
Chọn khẳng định sai
Cho hàm số y = f(x) xác định trên ℝ và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;+∞).
Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).
Tìm tập xác định
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tính giá trị của hàm số tại điểm
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Chọn khẳng định đúng
Cho hàm số
Khẳng định nào sau đây đúng?
TXĐ : nên ta loại đáp án C và D.
Xét
Với mọi và x1 < x2, ta có
Vậy hàm số đồng biến trên .
Tìm tập xác định
Tìm tập xác định D của hàm số
.
Hàm số xác định khi
⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.
Vậy tập xác định của hàm số là D = ℝ ∖ {3}.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: