Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 7 Bất phương trình bậc hai một ẩn

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 7 Bất phương trình bậc hai một ẩn sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm bảng xét dấu của tam thức bậc hai

    Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x^{2} + 2x + 1 là:

     Xét biếu thức f(x) = x^{2} + 2x + 1∆ = 0 và nghiệm là x = -{\text{ }}1;{\text{ }}a = 1 > 0

    Ta có bảng xét dấu như sau:

    Tìm bảng xét dấu của tam thức bậc hai

  • Câu 2: Nhận biết

    Tam thức bậc hai nhận giá trị âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 3: Nhận biết

    Tìm số giá trị nguyên của x

    Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

    f(x) = 2x^{2} - 7x - 9 \Leftrightarrow\left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{9}{2} \\\end{matrix} ight.

    Dựa vào bảng xét dấu, f(x) < 0\Leftrightarrow - 1 < x < \frac{9}{2}.

    x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).

  • Câu 4: Vận dụng

    Tìm điều kiện của m sao cho

    Tìm tất cả các giá trị của tham số m sao cho tam thức bậc hai f(x)=(m-1)x^{2}+(3m-2)x+3-2m đổi dấu hai lần trên \mathbb{R}?

    Để biểu thức trên là tam thức bậc hai thì m eq 1.

    Để tam thức bậc hai đổi dấu 2 lần trên \mathbb{R} thì \Delta >0.

    Ta có: (3m-2)^2-4 (m-1)(3-2m)>0 \Leftrightarrow17m^2-32m+16>0. Suy ra m \in \mathbb{R}.

    Kết hợp điều kiện ở trên, suy ra m eq 1.

     

  • Câu 5: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của aΔ.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0

  • Câu 6: Vận dụng cao

    Tìm số nghiệm nguyên dương của phương trình

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

  • Câu 7: Thông hiểu

    Tam thức bậc hai không âm khi nào

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 8: Thông hiểu

    Tính S

    Biết phương trình 3x + 1 - \sqrt{3x^{2} + 7x} - \sqrt{3x - 1} =0 có một nghiệm có dạng x = \frac{a +\sqrt{b}}{c}, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.

    Điều kiện: \left\{ \begin{matrix}3x^{2} + 7x \geq 0 \\3x - 1 \geq 0 \\\end{matrix} ight.\  \Leftrightarrow x \geq \frac{1}{3}\ \(*)

    Với điều kiện trên, phương trình tương đương

    \left\lbrack (2x + 1) - \sqrt{3x^{2} +7x} ightbrack + \left\lbrack x - \sqrt{3x - 1} ightbrack =0

    \Leftrightarrow \frac{x^{2} - 3x +1}{(2x + 1) + \sqrt{3x^{2} + 7x}} + \frac{x^{2} - 3x + 1}{x + \sqrt{3x -1}} = 0

    \Leftrightarrow \left( x^{2} - 3x + 1ight)\left( \frac{1}{2x + 1 + \sqrt{3x^{2} + 7x}} + \frac{1}{x +\sqrt{3x - 1}} ight) = 0

     ⇔ x2 − 3x + 1 = 0

    \Leftrightarrow x = \frac{3 +\sqrt{5}}{2} hoặc x = \frac{3 -\sqrt{5}}{2}

    Theo yêu cầu đề bài ta chọn nghiệm x =\frac{3 + \sqrt{5}}{2}.

    Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.

  • Câu 9: Nhận biết

    Tìm tam thức bậc hai thỏa mãn

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

  • Câu 10: Thông hiểu

    Giải phương trình chứa căn

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 11: Vận dụng

    Nghiệm của phương trình thuộc khoảng nào?

    Phương trình \sqrt[3]{\frac{2x}{x + 1}} + \sqrt[3]{\frac{1}{2} +\frac{1}{2x}} = 2 có nghiệm thuộc khoảng:

    Đặt t = \sqrt[3]{\frac{2x}{x +1}}. Phương trình đã cho trở thành: t+ \frac{1}{t} = 2 \Leftrightarrow t = 1

    Ta được \sqrt[3]{\frac{2x}{x + 1}} = 1\Leftrightarrow x = 1 thuộc [1 ; 2).

  • Câu 12: Nhận biết

    Số nghiệm của phương trình là

    Số nghiệm của phương trình x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)} là bao nhiêu?

    Điều kiện: (4 - x)(x + 2) \geq 0
\Leftrightarrow x \in \lbrack - 2;\ 4brack.

    x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)}\Leftrightarrow x^{2} - 2x - 8 = 4\sqrt{- \left( x^{2} - 2x - 8ight)}(1).

    Đặt t = \sqrt{- \left( x^{2} - 2x - 8
ight)}, t \geq 0 \Leftrightarrow t^{2} = - \left( x^{2} - 2x - 8
ight) \Leftrightarrow x^{2} - 2x - 8 = - t^{2}.

    (1) \Leftrightarrow - t^{2} = 4t\Leftrightarrow t^{2} + 4t = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 0(n) \\t = - 4(l) \\\end{matrix} ight.\  \Leftrightarrow \sqrt{- \left( x^{2} - 2x - 8ight)} = 0 \Leftrightarrow - \left( x^{2} - 2x - 8 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 2(n) \\x = 4(n) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 13: Nhận biết

    Tổng các nghiệm của phương trình là

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là bao nhiêu?

    \sqrt{x^{4} - 2x^{2} + 1} + x = 1\Leftrightarrow \sqrt{x^{4} - 2x^{2} + 1} = 1 - x\Leftrightarrow\left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là -
1.

  • Câu 14: Thông hiểu

    Tìm tập nghiệm của phương trình

    Tập nghiệm của phương trình 2x-\sqrt{x-8}=\sqrt{8-x}+16 là:

    Xét phương trình: 2x - \sqrt{x - 8} =\sqrt{8 - x} + 16. (1)

    Điều kiện : \left\{ \begin{matrix}x - 8 \geq 0 \\8 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 8 \\\end{matrix} ight.\  \Leftrightarrow x = 8.

    Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.

  • Câu 15: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 16: Vận dụng cao

    Tìm nghiệm của phương trình

    Nghiệm của phương trình \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x +
3}{5} là:

    Điều kiện: x \geq \frac{2}{3} .Ta có

    \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x
+ 3}{5}

    \Leftrightarrow \left( \sqrt{4x + 1} -
\sqrt{3x - 2} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) =
\left( \frac{x + 3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2}
ight)

    \Leftrightarrow x + 3 = \left( \frac{x +
3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight)

    \Leftrightarrow (x + 3)\left\lbrack 1 -
\frac{1}{5}\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) ightbrack =
0

    \Leftrightarrow \sqrt{4x + 1} + \sqrt{3x -
2} = 5 ( vì x + 3 > 0 )

     ⇔ x = 2.

  • Câu 17: Nhận biết

    Chọn khẳng định đúng

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 18: Nhận biết

    Phương trình sau có bao nhiêu nghiệm

    Phương trình sau có bao nhiêu nghiệm \sqrt{x - 1} = \sqrt{1 - x}?

    Điều kiện xác định: \left\{
\begin{matrix}
x \geq 1 \\
x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Với x = 1thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.

  • Câu 19: Nhận biết

    Tìm m để biểu thức là tam thức bậc hai

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 20: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.

    Với m = 0 thì f(x) =  − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán

    Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó f(x) < 0,\ \
\forall x \Leftrightarrow \left\{ \begin{matrix}
a = m < 0 \\
\Delta = 1 + 4m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m > - \frac{1}{4} \\
\end{matrix} \Leftrightarrow - \frac{1}{4} < m < 0 ight.

    Vậy với - \frac{1}{4} < m <
0 thì biểu thức f(x) luôn âm.

  • Câu 21: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 22: Thông hiểu

    Tìm tập nghiệm của phương trình

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 23: Thông hiểu

    Giải phương trình chứa căn

    Giải phương trình: \sqrt{2x^{2}-6x+4}=x-2

     Điều kiện: 2{x^2} - 6x + 4 \geqslant 0

    \Leftrightarrow x \in \left( { - \infty ;1} ight] \cup \left[ {2; + \infty } ight)

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 6x + 4}  = x - 2 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x - 2 \geqslant 0} \\   {2{x^2} - 6x + 4 = {{\left( {x - 2} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy phương trình có nghiệm x=2.

  • Câu 24: Thông hiểu

    Tìm các giá trị của tham số m thỏa mãn yêu cầu

    Tìm tất cả các giá trị của tham số m để bất phương trình x^{2} - (m + 2)x + 8m + 1 \leq 0 vô nghiệm.

    Để bất phương trình x^{2} - (m + 2)x + 8m
+ 1 \leq 0 vô nghiệm thì x^{2} - (m
+ 2)x + 8m + 1 > 0,\forall x\mathbb{\in R}.

    {x^2} - (m + 2)x + 8m + 1 > 0,\forall x \in \mathbb{R}

    \Leftrightarrow m^{2} + 4m + 4 - 32m - 4
< 0

    \Leftrightarrow m^{2} - 28m <
0

    \Leftrightarrow 0 < m <
28.

  • Câu 25: Nhận biết

    Tìm tập nghiệm S

    Tập nghiệm S của phương trình \sqrt{2x-3}=x-3 là:

    Ta có: \sqrt{2x-3}=x-3  \Rightarrow{2x-3}= (x-3)^2 \Leftrightarrow x^2-8x+12=0 \Leftrightarrow\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} ight.

    Thử lại thấy x=2 không thỏa mãn.

    Vậy S= \{6\}.

     

  • Câu 26: Vận dụng

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 27: Thông hiểu

    Tìm tập nghiệm S

    Tập nghiệm của phương trình \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1} là?

     Điều kiện: x > \frac13.

    Ta có: \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1}  \Leftrightarrow 3x^{2}-7x+2=3x-1\Leftrightarrow 3x^2-10x+3=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{3}}\\{x = 3}\end{array}} ight.. Loại x= \frac13.

    Vậy S=\{3\}.

     

  • Câu 28: Nhận biết

    Tổng tất cả các nghiệm của phương trình

    Tổng tất cả các nghiệm của phương trình \sqrt{x^{2} + 3x - 2} = \sqrt{1 +
x} bằng:

    \sqrt{x^{2} + 3x - 2} = \sqrt{1 + x}
\Leftrightarrow \left\{ \begin{matrix}
1 + x \geq 0 \\
x^{2} + 3x - 2 = 1 + x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x^{2} + 2x - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Phương trình chỉ có nghiệm x = 1 nên tổng các nghiệm bằng 1.

  • Câu 29: Vận dụng

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{7 - x} + \sqrt{x - 5} = x^{2} - 12x +38 là:

    ĐK: x ∈ [5; 7]

    Đặt t = x − 6 , t ∈ [ − 1; 1].

    Phương trình trở thành \sqrt{1 - t} +\sqrt{t - 1} = t^{2} + 2 \Leftrightarrow 2 + 2\sqrt{1 - t^{2}} = \left(t^{2} + 2 ight)^{2}(*) .

    Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).

    Vậy phương trình có một nghiệm.

  • Câu 30: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 31: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 32: Nhận biết

    Phương trình có nghiệm là

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 33: Vận dụng cao

    Tìm m để phương trình có nghiệm

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 34: Nhận biết

    Tìm nghiệm của phương trình

    Nghiệm của phương trình: \sqrt{x - 2} = \sqrt{2 - x} là bao nhiêu?

    Điều kiện: \left\{ \begin{matrix}
x - 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow x = 2.

    Thay x = 2 vào phương trình ta được 0 = 0 hay x = 2 là nghiệm của phương trình.

  • Câu 35: Thông hiểu

    Tìm tập nghiệm của bất phương trình

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

  • Câu 36: Nhận biết

    Tam thức bậc hai dương khi và chỉ khi

    Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi

    f(x) = 2x2 + 2x + 5 = 0 có: \left\{ \begin{matrix}
\Delta' = 1 - 10 = - 9 < 0 \\
a = 2 > 0 \\
\end{matrix} ight. nên f(x) > 0∀x ∈ ℝ.

  • Câu 37: Vận dụng

    Tìm bảng biến thiên của tam thức bậc hai

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c có đồ thị như hình vẽ dưới đây

    Tìm bảng biến thiên của tam thức bậc hai

    Bảng biến thiên của tam thức bậc hai là

    Từ đồ thị ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3

    => f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án

    Tìm bảng biến thiên của tam thức bậc hai Tìm bảng biến thiên của tam thức bậc hai

    Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án 

    Tìm bảng biến thiên của tam thức bậc hai

    Vậy bảng biến thiên đúng là

    Tìm bảng biến thiên của tam thức bậc hai
  • Câu 38: Nhận biết

    Giải phương trình

    Số nghiệm của phương trình \sqrt{2x-4}=\sqrt{x^{2}-3x} là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {2x - 4 \geqslant 0} \\   {{x^2} - 3x \geqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {x \in \left( { - \infty ;0} ight] \cup \left[ {3; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow x \geqslant 3 \hfill \\ \end{matrix}

    \begin{matrix}  \sqrt {2x - 4}  = \sqrt {{x^2} - 3x}  \hfill \\   \Leftrightarrow 2x - 4 = {x^2} - 3x \hfill \\   \Leftrightarrow {x^2} - 5x + 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {ktm} ight)} \\   {x = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy phương trình đã cho có tất cả 1 nghiệm.

  • Câu 39: Nhận biết

    Chọn khẳng định đúng

    Tam thức bậc hai f(x) = x^{2} + \left( 1 - \sqrt{3} ight)x - 8 -
5\sqrt{3}:

    f(x) = x^{2} + \left( 1 - \sqrt{3}
ight)x - 8 - 5\sqrt{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 - \sqrt{3} \\
x = 1 + 2\sqrt{3} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án Âm với mọi x \in \left( - 2 - \sqrt{3};1 + 2\sqrt{3}
ight).

  • Câu 40: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Bất phương trình bậc hai một ẩn Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo