Giải phương trình
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Đề kiểm tra 45 phút Toán 10 Chương 7 Bất phương trình bậc hai một ẩn sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Giải phương trình
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Tổng các nghiệm của phương tình bằng
Tổng các nghiệm của phương trình
bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Tính tổng các nghiệm của phương trình
Tổng các nghiệm của phương trình
là
ĐKXĐ: x ≥ 0
Dễ thấy x = 0 không phải là nghiệm của phương trình
Xét x > 0, phương trình
Đặt
Phương trình trở thành
• Với t = 1 ta có (thỏa mãn)
• Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là và x = 1.
Tổng các nghiệm của phương trình là .
Tìm tập nghiệm S
Tập nghiệm của phương trình
là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Chọn khẳng định đúng
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Tìm m để phương trình có nghiệm
Các giá trị của tham số m để phương trình
(1) có nghiệm là:
Đặt
⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3
Vì nên
Phương trình (1) trở thành 4t2 − 3 + m = t ⇔ − 4t2 + t + 3 = m.
Xét hàm số y = − 4t2 + t − 3 với
Ta có
Bảng biến thiên

Phương trình (1) có nghiệm ⇔ phương trình có nghiệm
⇔ đồ thị hàm số y = − 4t2 + t − 3 trên cắt đường thẳng
.
Vậy phương trình (1) có nghiệm khi và chỉ khi .
Tập nào không là tập con của A
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Tìm nghiệm của phương trình
Nghiệm của phương trình:
là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Tìm tập xác định
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
⇔ x2 + x − 20 ≥ 0
Bảng xét dấu

Dựa vào bảng xét dấu, ta thấy x2 + x − 20 ≥ 0 ⇔ x ∈ (−∞ ; −5) ∪ (4 ; + ∞].
Vậy tập xác định của hàm số là D = (−∞ ; −5) ∪ (4 ; + ∞].
Giải phương trình chứa căn
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Tìm x thỏa mãn điều kiện
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Tìm số nghiệm của phương trình
Phương trình
có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Tìm tập xác định của hàm số
Tập xác định của hàm số
là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Số nghiệm của phương trình là
Số nghiệm của phương trình
là:
.
Vậy phương trình vô nghiệm.
Tìm tập nghiệm của phương trình
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Tìm khẳng định đúng
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Tam thức bậc hai đổi dấu trên R
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Tìm m thỏa mãn điều kiện
Tìm tất cả các giá trị thực của tham số m để bất phương trình (m2−4)x2 + (m−2)x + 1 < 0 vô nghiệm.
• Xét m2 − 4 = 0 ⇔ m = ± 2
Với m = − 2, bất phương trình trở thành : không thỏa mãn.
Với m = 2, bất phương trình trở thành 1 < 0: vô nghiệm. Do đó m = 2 thỏa mãn.
• Xét m ≠ ± 2. Yêu cầu bài toán
⇔ (m2−4)x2 + (m−2)x + 1 ≥ 0, ∀x ∈ ℝ
Kết hợp hai trường hợp, ta được hoặc m ≥ 2.
Tìm mệnh đề đúng.
Cho
có
. Khi đó mệnh đề nào đúng?
Khi thì
luôn cùng dấu với hệ số
. Do đó nó không đổi dấu.
Tìm tập nghiệm của phương trình
Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Tìm tập nghiệm S
Tập nghiệm
của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .
Tìm m để phương trình có nghiệm
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên

Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .
Tìm nghiệm của phương trình
Nghiệm của phương trình
là:
Điều kiện: .Ta có
( vì x + 3 > 0 )
⇔ x = 2.
Chọn khẳng định đúng
Tam thức bậc hai ![]()

Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi .
Chọn khẳng định đúng
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Tính tổng bình phương các nghiệm của phương trình
Tính tổng bình phương các nghiệm của phương trình:
là:
ĐK x ∈ [ − 2; 5] Đặt ,t ≥ 0.
Phương trình trở thành
⇒ x12 + x22 = 11.
Tìm m để biểu thức là tam thức bậc hai
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Tìm x thỏa mãn
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Số nghiệm của phương trình là
Số nghiệm của phương trình
là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Tìm m thỏa mãn điều kiện
Các giá trị m để tam thức
đổi dấu 2 lần là:
Để đổi dấu 2 lần thì
.
Ta có:
hoặc
.
Tam thức bậc hai dương khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Tìm m để biểu thức luôn dương
Các giá trị m làm cho biểu thức
luôn dương là
Biểu thức luôn dương
Tìm số giá trị nguyên của x
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Phương trình có bao nhiêu nghiệm?
Phương trình
có bao nhiêu nghiệm?
.
Vậy phương trình có 2 nghiệm.
Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình
là:
Ta có:
Tổng các nghiệm của phương trình là
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Phương trình có nghiệm là
Phương trình
có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Tìm số nghiệm của phương trình
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: