Tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Đề kiểm tra 45 phút Toán 10 Chương 7 Bất phương trình bậc hai một ẩn sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Tìm số nghiệm của phương trình
Số nghiệm của phương trình
là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Tìm khẳng định đúng
Biết phương trình
có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Tìm số nghiệm của phương trình
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình
là:
Ta có:
Chọn khẳng định đúng
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Tìm m thỏa mãn điều kiện
Cho
. Tìm
để
âm với mọi giá trị
.
Để
thì
.
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương:
Kết hợp điều kiện ta được: thỏa mãn điều kiện
Vậy phương trình đã cho có một nghiệm.
Tổng các bình phương của các nghiệm là
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Tìm số nghiệm của phương trình
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Tam thức bậc hai dương khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Tìm tập nghiệm của phương trình
Phương trình
có tập nghiệm là:
Ta có: .
Thử lại thấy không thỏa mãn. Vậy
.
Tam thức bậc hai nhận giá trị âm khi và chỉ khi
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Tìm m thỏa mãn điều kiện
Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi
Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0, có Δ′x = (m+2)2 + 2m + 1.
Yêu cầu bài toán ⇔ Δ′x ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0
là giá trị cần tìm.
Chọn khẳng định đúng
Cho tam thức bậc hai f(x) = x2 − 5x + 6 và a là số thực lớn hơn 3. Tìm khẳng định đúng trong các khẳng định sau.

Dựa vào bảng xét dấu thì f(x) > 0 khi x < 2 ∨ x > 3 mà a > 3 nên f(a) > 0.
Giải phương trình chứa căn
Giải phương trình: ![]()
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ta được thỏa mãn
Vậy phương trình có nghiệm .
Số nghiệm của phương trình là
Số nghiệm của phương trình
là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Tính giá trị của biểu thức
Giả sử
là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.
Tìm khẳng định đúng
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Số nghiệm nguyên dương của phương trình là
Số nghiệm nguyên dương của phương trình
là
.
Vậy phương trình có một nghiệm nguyên dương.
Tìm tập xác định
Tìm tập xác định của hàm số
.
ĐKXĐ: x2 + 2(1−m)x + 2m2 + 3 > 0
Xét tam thức bậc hai f(x) = x2 + 2(1−m)x + 2m2 + 3
Ta có
(Vì tam thức bậc hai f(m) = − m2 − 2m − 2 có am = − 1 < 0, Δ′m = − 1 < 0 )
Suy ra với mọi m ta có x2 + 2(1−m)x + 2m2 + 3 > 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Tổng tất cả các nghiệm của phương trình
Tổng tất cả các nghiệm của phương trình
bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình
là
Ta có: .
Tìm m thỏa mãn điều kiện
Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:
Ta có:x2 − 2(m−1)x + m2 − 2m = 0
⇔ x2 − 2mx + m2 + 2x − 2m = 0
Để phương trình đã cho có hai nghiệm trái dấu (1)
Với m ∈ (0 ; 2) suy ra .
Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0
⇔ (x2−x1)(x2+x1) > 0
⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1
Kết hợp điều kiện (1), ta được 0 < m < 1.
Tìm nghiệm của bất phương trình
Nghiệm của bất phương trình
có
Ta có:
Bảng xét dấu

f(x) > 0 ⇔ x ∈ (−∞;−1) ∪ (0;1) ∪ (2;3) ∪ (4;+∞)
Tìm tam thức bậc hai thỏa mãn
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6

Tam thức bậc hai dương khi và chỉ khi
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Chọn khẳng định đúng
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Tìm số nghiệm của phương trình
Phương trình
có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình là
Số nghiệm của phương trình
là bao nhiêu?
Xét phương trình:
Điều kiện: .
Vậy phương trình vô nghiệm.
Tìm m thỏa mãn điều kiện
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Tìm nghiệm của phương trình
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là:
ĐKXĐ: x > 0.
Phương trình tương đương với
.
Đặt
Phương trình trở thành:
Với ta có
Với ta có
Vậy phương trình có nghiệm là x = 1 và .
Tìm nghiệm của phương trình
Nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn. Do đó
.
Tìm m để
Tìm m để phương trình
có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên

Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Tìm x thỏa mãn
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Tính tổng bình phương các nghiệm của phương trình
Tính tổng bình phương các nghiệm của phương trính
bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Tính số nghiệm của phương trình
Số nghiệm của phương trình
là:
ĐKXĐ: x3 + 1 ≥ 0 ⇔ x ≥ − 1.
Phương trình
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = x2 + 2 khi đó
Phương trình trở thành
Với 3a = b ta có
(thỏa mãn điều kiện)
Với a = 3b ta có
⇔ 9x2 − 10x + 8 = 0 (phương trình vô nghiệm).
Vậy phương trình có nghiệm là .
Tìm điều kiện chính xác
Cho
. Điều kiện để
là:
Ta có:
.
Tính tổng các nghiệm của phương trình
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: