Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 2: Vận dụng cao

    Xác định dạng tam giác

    Tam giác ABC có ba đường trung tuyến m_{a},\ m_{b},\ m_{c} thỏa mãn 5m_{a}^{2} = m_{b}^{2} +
m_{c}^{2}. Khi đó tam giác này là tam giác gì?

    Ta có: \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4}\end{matrix} \right.

    Mà: 5m_{a}^{2} = m_{b}^{2} +
m_{c}^{2}

    \Rightarrow 5\left( \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} \right) = \frac{a^{2} + c^{2}}{2} -
\frac{b^{2}}{4} + \frac{a^{2} + b^{2}}{2} - \frac{c^{2}}{4}

    \Leftrightarrow 10b^{2} + 10c^{2} -
5a^{2} = 2a^{2} + 2c^{2} - b^{2} + 2a^{2} + 2b^{2} - c^{2}

    \Leftrightarrow b^{2} + c^{2} = a^{2}
\Rightarrow Tam giác \Delta
ABC vuông.

  • Câu 3: Nhận biết

    Tính giá trị lượng giác

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 4: Nhận biết

    Xác định hệ thức sai

    Hai góc nhọn \alpha\beta phụ nhau, hệ thức nào sau đây là sai?

    Ta có:

    \cos\alpha = \cos\left( 90^{0} - \beta
\right) = \sin\beta

    Vậy hệ thức sai là: \cos\alpha = -
\sin\beta.

  • Câu 5: Thông hiểu

    Tính độ dài cạnh c của tam giác ABC

    Cho tam giác ABC có a = 8,b =
10, góc C bằng 60^{0}. Độ dài cạnh c bằng bao nhiêu?

    Ta có:

    c^{2} = a^{2} + b^{2} -2a.b.\cos C

    = 8^{2} + 10^{2} - 2.8.10.\cos60^{0} = 84\Rightarrow c = 2\sqrt{21}.

  • Câu 6: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 7: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 8: Nhận biết

    Tìm công thức đúng

    Cho tam giác ABC, chọn công thức đúng?

    Công thức đúng là:

    AB^{2} = AC^{2} +BC^{2} - 2AC.BC\cos C

  • Câu 9: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 10: Thông hiểu

    Tính độ dài cạnh BC.

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 11: Vận dụng

    Tính chiều cao của tháp

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 12: Vận dụng

    Tìm mệnh đề saia

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    \sin^{6}x + \cos^{6}x = \left( \sin^{2}x\right)^{3} + \left( \cos^{2}x \right)^{3}

    = \left( \sin^{2}x + \cos^{2}x \right)^{3}- 3\left( \sin^{2}x + \cos^{2}x \right).\sin^{2}x.\cos^{2}x

    = 1 - 3\sin^{2}x.\cos^{2}x.

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức T

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 14: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 15: Nhận biết

    Chọn đáp án chính xác

    Giá trị của \cos60^{0} +\sin30^{0} bằng bao nhiêu?

    Ta có: cos60^{0} + sin30^{0} =
\frac{1}{2} + \frac{1}{2} = 1.

  • Câu 16: Nhận biết

    Tinh độ dài cạnh b

    Cho \Delta ABCB = 60^{0},a = 8,c = 5. Độ dài cạnh b bằng:

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 5^{2} - 2.8.5.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 17: Thông hiểu

    Tính diện tích mảnh đất

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 18: Thông hiểu

    Tìm diện tích tam giác

    Một tam giác có ba cạnh là 13,14,15. Diện tích tam giác bằng bao nhiêu?

    Ta có:

    p = \frac{a + b + c}{2} = \frac{13
+ 14 + 15}{2} = 21.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{21(21 - 13)(21 - 14)(21 - 15)} =
84.

  • Câu 19: Nhận biết

    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} = \frac{2b^{2} + 2c^{2} -
a^{2}}{4}.

  • Câu 20: Thông hiểu

    Tính chiều cao ngọn tháp

    Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,\ B trên mặt đất sao cho ba điểm A,\ BC thẳng hàng. Ta đo được AB = 24\ m, \widehat{CAD} = 63^{0},\ \widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có:

    \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.\sin\beta}{\sin(\alpha- \beta)} = \frac{24.\sin48^{0}}{\sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.\sin\alpha \approx 61,4m

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo