Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính giá trị biểu thức

    Cho góc \alpha thỏa mãn \sin(\pi + \alpha) = - \frac{1}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \tan\left( \frac{7\pi}{2} - \alpha
ight).

    Ta có P = \tan\left( \frac{7\pi}{2} -
\alpha ight) = \tan\left( 3\pi + \frac{\pi}{2} - \alpha
ight) = \tan\left( \frac{\pi}{2}
- \alpha ight) = \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}.

    Theo giả thiết: \sin(\pi + \alpha) = -
\frac{1}{3} \Leftrightarrow -
\sin\alpha = - \frac{1}{3} \Leftrightarrow \sin\alpha =
\frac{1}{3}.

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{2\sqrt{2}}{3} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{2\sqrt{2}}{3}\overset{}{ightarrow}P = - 2\sqrt{2}.

  • Câu 2: Nhận biết

    Chọn đẳng thức đúng

    Đẳng thức nào sau đây đúng?

    Lý thuyết “cung hơn kém 180^{0}”.

  • Câu 3: Thông hiểu

    Tính độ dài BC

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiêu?

    Ta có: p = \frac{5 + 12 + 13}{2} =
15.

    5^{2} + 12^{2} = 13^{2} \Rightarrow S
= \frac{1}{2}.5.12 = 30.

    Mặt khác S = p.r \Rightarrow r =
\frac{S}{p} = 2.

  • Câu 6: Thông hiểu

    Giá trị lượng giác nào sau đây luôn dương?

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 7: Vận dụng

    Tính chiều cao của tháp

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 8: Thông hiểu

    Tìm mệnh đề đúng

    Cho tam giác ABC thoả mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có:

    \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R

    \Rightarrow \dfrac{\dfrac{b + c}{2}}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

    \Leftrightarrow \frac{b + c}{2\sin A} =\frac{b + c}{\sin B + \sin C}

    \Leftrightarrow \sin B + \sin C =2\sin A

  • Câu 9: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 10: Nhận biết

    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 11: Thông hiểu

    Tính giá trị biểu thức

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Xác định câu sai

    Tìm khẳng định sai trong các khẳng định sau:

    Đáp án sai là: cos75^{0} >
cos50^{0}.

  • Câu 13: Nhận biết

    Tìm câu sai

    Cho tam giác ABC. Tìm công thức sai trong các công thức dưới đây?

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 14: Nhận biết

    Tính diện tích tam giác

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 15: Thông hiểu

    Tìm câu sai

    Khẳng định nào sau đây là sai?

    Ta có:

    \tan\alpha.\cot\alpha = \frac{\sin x}{\cos x}.\frac{\cos x}{\sin x} = 1.

  • Câu 16: Thông hiểu

    Tìm khẳng định sai

    Cho hai góc nhọn \alpha\beta, (\alpha < \beta). Khẳng định nào sau đây là sai?

    Biểu diễn các góc trên đường tròn ta thấy:

    Nhận thấy \alpha < \beta \Rightarrow
\sin\alpha > \sin\beta

    Vậy khẳng định sai là: \sin\alpha <
\sin\beta.

  • Câu 17: Nhận biết

    Xác định bất đẳng thức đúng

    Bất đẳng thức nào dưới đây là đúng?

    Câu đúng là: \cos95^{0} > \cos100^{0}.

  • Câu 18: Thông hiểu

    Tìm diện tích tam giác

    Một tam giác có ba cạnh là 13,14,15. Diện tích tam giác bằng bao nhiêu?

    Ta có:

    p = \frac{a + b + c}{2} = \frac{13
+ 14 + 15}{2} = 21.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{21(21 - 13)(21 - 14)(21 - 15)} =
84.

  • Câu 19: Vận dụng cao

    Tính giá trị biểu thức

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

  • Câu 20: Nhận biết

    Tính độ dài cạnh tam giác

    Cho \Delta ABCb = 6,c = 8,\widehat{A} = 60^{0}. Độ dài cạnh a là:

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A

    = 36 + 64 - 2.6.8.\cos60^{0} =52

    \Rightarrow a = 2\sqrt{13}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo