Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính độ dài cạnh BC

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 2: Thông hiểu

    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 3: Thông hiểu

    Tính tan góc α

    Cho biết \cos\alpha = -
\frac{2}{3}. Tính \tan\alpha?

    Do \cos\alpha < 0 \Rightarrow
\tan\alpha < 0.

    Ta có: 1 + tan^{2}\alpha =
\frac{1}{cos^{2}\alpha}

    \Leftrightarrow tan^{2}\alpha =
\frac{5}{4} \Rightarrow \tan\alpha = - \frac{\sqrt{5}}{2}

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 5: Vận dụng

    Chọn đáp án đúng

    Rút gọn biểu thức sau A = \frac{\cot^{2}x- \cos^{2}x}{\cot^{2}x} + \frac{\sin x.\cos x}{\cot x} thu được kết quả là: 

    Ta có:

    A = \frac{\cot^{2}x- \cos^{2}x}{\cot^{2}x} + \frac{\sin x.\cos x}{\cot x}

    = 1 - \frac{\cos^{2}x}{\cot^{2}x} +\frac{\sin x.\cos x}{\cot x} = 1 - \sin^{2}x + \sin^{2}x = 1.

  • Câu 6: Vận dụng

    Chọn kết luận đúng

    Tam giác ABCAB = c, BC = a, CA = b. Gọi m_{a},\ m_{b},\ m_{c} là độ dài ba đường trung tuyến, G trọng tâm. Xét các khẳng định sau:

    (I). m_{a}^{2} + m_{b}^{2} + m_{c}^{2} =
\frac{3}{4}\left( a^{2} + b^{2} + c^{2} \right).

    (II). GA^{2} + GB^{2} + GC^{2} = \frac{1}{3}\left( a^{2}
+ b^{2} + c^{2} \right).

    Trong các khẳng định đã cho có

    Ta có:

    \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4}\end{matrix} \right.\Rightarrow m_{a}^{2} + m_{b}^{2} +
m_{c}^{2} = \frac{3}{4}\left( a^{2} + b^{2} + c^{2} \right)

    GA^{2} + GB^{2} + GC^{2} =
\frac{4}{9}\left( m_{a}^{2} + m_{b}^{2} + m_{c}^{2} \right) = \frac{4}{9}.\frac{3}{4}\left( a^{2} +
b^{2} + c^{2} \right) = \frac{1}{3}\left( a^{2} + b^{2} + c^{2}
\right).

  • Câu 7: Nhận biết

    Tính độ dài bán kính đường tròn ngoại tiếp

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 8: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 9: Thông hiểu

    Giá trị lượng giác nào sau đây luôn dương?

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Tính diện tích tam giác

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 13: Thông hiểu

    Tính độ dài AC

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 14: Nhận biết

    Tìm câu sai

    Cho tam giác ABC. Tìm công thức sai trong các công thức dưới đây?

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 15: Nhận biết

    Chọn hệ thức đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có: sin^{2}2\alpha + cos^{2}2\alpha = 1 là công thức đúng.

  • Câu 16: Thông hiểu

    Tìm câu sai

    Khẳng định nào sau đây là sai?

    Ta có:

    \tan\alpha.\cot\alpha = \frac{\sin x}{\cos x}.\frac{\cos x}{\sin x} = 1.

  • Câu 17: Nhận biết

    Tìm đẳng thức sai

    Đẳng thức nào sau đây sai?

    Giá trị lượng giác của góc đặc biệt ta có:

    \left\{ \begin{matrix}\sin120^{0} = \dfrac{\sqrt{3}}{2} \\\cos30^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \sin120^{0} + \cos30^{0} =2.\dfrac{\sqrt{3}}{2} = \sqrt{3} \neq 0

    Vậy đẳng thức sai là: sin120^{0} +
cos30^{0} = 0.

  • Câu 18: Thông hiểu

    Tính khoảng cách AB

    Từ một đỉnh tháp chiều cao CD =
80m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26'. Ba điểm A; B; D thẳng hàng. Tính khoảng cách AB?

    Ta có: Trong tam giác vuông :

    \tan72^{0}12' =\frac{CD}{AD}\Rightarrow AD =\frac{CD}{\tan72^{0}12'} \approx 25,7

    Trong tam giác vuông :

    \tan34^{0}12' =\frac{CD}{BD}\Rightarrow BD =\frac{CD}{\tan34^{0}12'} \approx 116,7

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91(m)

  • Câu 19: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có:

    S = \frac{1}{2}bc\sin A =
\frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C.

  • Câu 20: Vận dụng cao

    Tính góc giữa hai đường trung tuyến

    Tam giác ABCAB = c, BC = a, CA = b. Các cạnh a,\ b,\ c liên hệ với nhau bởi đẳng thức a^{2} + b^{2} = 5c^{2}. Góc giữa hai trung tuyến AMBN là góc nào?

    Gọi G là trọng tâm tam giác \Delta ABC.

    Ta có: AM^{2} = \frac{AC^{2} + AB^{2}}{2}
- \frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} \right)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác \Delta AGN ta có:

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}\right)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} \right)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo