Tính số đo góc B
Cho tam giác
, biết
Tính góc
?
Ta có:
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!
Tính số đo góc B
Cho tam giác
, biết
Tính góc
?
Ta có:
Chọn khẳng định đúng
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Tính tích vô hướng giữa hai vectơ
Cho tam giác
vuông tại
,
. Tính
?
Hình vẽ minh họa:

Ta có:
.
Tìm số nghiệm của phương trình
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Tìm tọa độ điểm A
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Chọn phương án thích hợp
Cho hai tập hợp
thỏa mãn
. Mệnh đề nào sau đây đúng?
Biểu đồ Ven:
Vậy đáp án cần tìm là:
Tìm tọa độ vectơ thoả mãn
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Chọn đáp án thích hợp
Cho mệnh đề chứa biến
. Trong đoạn
có bao nhiêu giá trị của
để mệnh đề chứa biến
là mệnh đề đúng?
Số giá trị nguyên để mệnh đề là mệnh đề đúng chính là số nghiệm nguyên của phương trình
+ Nếu thì ta có
.
+ Nếu thì ta có
. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:
Phương trình đã cho có tập nghiệm nguyên trên đoạn là
.
Vậy có số nguyên thỏa mãn yêu cầu bài toán.
Tính độ dài cạnh BC
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Chọn công thức đúng
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Tìm m thỏa mãn điều kiện
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Chọn khẳng định đúng
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Xác định tổng các vecto
Tổng
bằng vectơ nào sau đây?
Ta có
.
Chọn đáp án thích hợp
Câu nào trong các câu sau không phải là mệnh đề?
Câu không phải mệnh đề là: “ có phải là một số vô tỷ không?”.
Chọn đáp án đúng
Cho
. Tọa độ của vec tơ
là:
Ta có: .
Chọn phương án thích hợp
Tính chất đặc trưng của tập hợp ![]()
Ta liệt kê các phần tử từng đáp án, đáp án nào thỏa yêu cầu bài toán ta sẽ chọn.
Đáp án cần tìm là: .
Hệ thức nào sau đây là sai?
Tam giác
vuông ở
và có góc
. Hệ thức nào sau đây là sai?
Vì nên loại
.
Vì nên loại
.
Vì nên loại
.
Vì nên chọn
.
Tìm bất phương trình thỏa mãn
Cặp số
là nghiệm của bất phương trình nào sau đây?
Vì là mệnh đề đúng nên cặp số
là nghiệm của bất phương trình
.
Thực hiện phép tính
Cho tam giác đều
cạnh
. Khi đó ![]()
Gọi là trung điểm
.
Ta có:
.
Khẳng định nào sau đây đúng?
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Chọn khẳng định sai
Cho
vuông tại
, góc
bằng
. Khẳng định nào sau đây là sai?
Ta có:
.
Tìm trục đối xứng
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Tìm số nghiệm của phương trình
Phương trình
có mấy nghiệm ?
Điều kiện: x ≥ − 1
Đặt
Phương trình đã cho trở thành:
Với t = 5 ta có:
Vậy phương trình đã cho có 1 nghiệm.
Tính giá trị biểu thức
Biểu thức
có giá trị bằng:
Ta có:
.
.
.
Tìm m để hàm số đồng biến
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Xét tính đúng, sai của hai mệnh đề A và B.
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Tính độ dài vectơ
Cho tam giác
, có bao nhiêu điểm
thỏa
?
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Chọn khẳng định đúng
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Giải hệ bất phương trình bậc nhất hai ẩn
Khoảng giá trị của x khi
trong hệ bất phương trình
là:
Với hệ bất phương trình trở thành:
Vậy khi thì khoảng giá trị của x là
.
Tìm công thức hàm số bậc hai
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tính độ lớn của vectơ
Cho hai vectơ
và
. Biết
=2 ,
=
và
. Tính
.
Ta có:
.
Tìm công thức hàm số bậc hai
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Nhận xét:
Parabol có bề lõm hướng xuống.
Parabol cắt trục hoành tại 2 điểm (3;0) và (−1;0). Xét các đáp án, đáp án thỏa mãn.
Tìm hệ bất phương trình thỏa mãn đề bài
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Chọn khẳng định đúng
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Tính diện tích tam giác
Tam giác
có
và có diện tích
. Nếu tăng cạnh
lên
lần đồng thời tăng cạnh
lên
lần và giữ nguyên độ lớn của góc
thì khi đó diện tích của tam giác mới được tạo nên bằng:
Diện tích tam giác ban đầu là:
Khi tăng cạnh lên
lần và cạnh
lên
lần thì diện tích tam giác
lúc này là
Điều kiện cần và đủ để ba điểm thẳng hàng.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Tìm m thỏa mãn điều kiện
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Cặp số nào là nghiệm của bất phương trình
Cặp số nào sau đây là nghiệm của bất phương trình
?
Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:
Vậy (0;3) không là cặp nghiệm của bất phương trình
Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:
Vậy (6; 1) là cặp nghiệm của bất phương trình.
Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:
Vậy (2; 4) không là cặp nghiệm của bất phương trình.
Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:
Vậy (3; 2) không là cặp nghiệm của bất phương trình.
Tìm x để mệnh đề đúng
Với giá trị nào của
thì mệnh đề chứa biến
là đúng?
Với ta có
(Sai).
Với ta có
(Đúng).
Với ta có
(Sai).
Với ta có
(Sai).
Tìm tập nghiệm của phương trình
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Tính cosin góc giữa 2 vectơ
Tam giác
vuông ở
và có
Tính ![]()
Hình vẽ minh họa:

Xác định được
Ta có
Vậy
Khẳng định nào sau đây đúng?
Cho tam giác
đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Tìm tất cả các giá trị của tham số m
Cho hai tập hợp khác rỗng
với
. Tìm tất cả các giá trị của tham số
để tập
là tập con của tập
.
Vì khác rỗng và
nên
Vậy giá trị cần tìm là
.
Tìm đẳng thức sai
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Tìm a thỏa mãn điều kiện
Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?
*a = 0thì bpt trở thành − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.
* a ≠ 0 thì .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: