Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn mệnh đề không phải mệnh đề toán học

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 2: Vận dụng

    Tìm tọa độ điểm C

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 3: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 4: Vận dụng cao

    Tìm m để phương trình có nghiệm

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 5: Nhận biết

    Chọn công thức đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 6: Thông hiểu

    Tính tổng tọa độ vectơ

    Cho 6 điểm A,B,C,D,E,F. Tổng vectơ: \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF} bằng:

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF}

    = \left( \overrightarrow{AD} +
\overrightarrow{DB} \right) + \left( \overrightarrow{CF} +
\overrightarrow{FD} \right) + \left( \overrightarrow{EB} +
\overrightarrow{BF} \right)

    = \overrightarrow{AD} +
\overrightarrow{CF} + \overrightarrow{EB}.

  • Câu 7: Vận dụng

    Mệnh đề nào sau đây đúng?

    Cho x là số thực mệnh đề nào sau đây đúng?

    Với x = 10 \Rightarrow x^{2} = 100 >
5 nhưng - \sqrt{5} < 10 <
\sqrt{5} là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow -
\sqrt{5} < x < \sqrt{5} sai.

    Với x = - 10 \Rightarrow x^{2} = 100 >
5 nhưng - 10 > \pm
\sqrt{5} là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow x
> \pm \sqrt{5} sai.

    Với x = 3 \Rightarrow x^{2} = 9 >
5 nhưng 3 \geq 5 \vee 3 \leq -
5 là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow x
\geq 5 \vee x \leq - 5 sai.

    Chọn đáp án \forall x\mathbb{\in R},x^{2}
> 5 \Rightarrow x > \sqrt{5} \vee x < - \sqrt{5}.

  • Câu 8: Vận dụng

    Tích tích vô hướng của hai vectơ

    Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính \overrightarrow{AB}\times \overrightarrow{BD}.

    Do ABCD là hình chữ nhật => \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {180^0} - \widehat {ABD}

    Xét tam giác ABD vuông tại A ta có:

    \begin{matrix}  DB = \sqrt {A{B^2} + A{D^2}}  = \sqrt {89}  \hfill \\   \Rightarrow \cos \widehat {ABD} = \dfrac{{AB}}{{BD}} = \dfrac{8}{{\sqrt {89} }} \hfill \\ \end{matrix}

    Ta lại có: 

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {BD}  = \left| {\overrightarrow {AB} } ight|.\left| {\overrightarrow {BD} } ight|. - \cos \left( {\widehat {ABD}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  = 8.\sqrt {89} .\left( {\dfrac{{ - 8}}{{\sqrt {89} }}} ight) \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {BD}  =  - 64 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức

    Biểu thức: f(x) = \cos^{4}x +\cos^{2}x.\sin^{2}x + \sin^{2}x có giá trị bằng:

    Ta có:

    f(x) = \cos^{2}x\left( \cos^{2}x + \sin^{2}x\right) + \sin^{2}x = \cos^{2}x + \sin^{2}x = 1.

  • Câu 10: Nhận biết

    Tính độ dài cạnh b

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 11: Vận dụng

    Tìm nghiệm của bất phương trình

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 12: Thông hiểu

    Tìm số câu là mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    Hãy cố gắng học thật tốt!

    Số 20 chia hết cho 6.

    Số 5 là số nguyên tố.

    Số x là số chẵn.

    Có hai mệnh đề là

    Số 20 chia hết cho 6.

    Số 5 là số nguyên tố.

  • Câu 13: Vận dụng

    Tính diện tích tam giác ABC

    Tam giác ABC có hai đường trung tuyến BM,\ CN vuông góc với nhau và có BC = 3, góc \widehat{BAC} = 30^{0}. Tính diện tích tam giác ABC.

    BM\bot CN \Rightarrow 5a^{2} = b^{2} +
c^{2}. (Áp dụng hệ quả đã có trước)

    Trong tam giác ABC, ta có

    a^{2} = b^{2} + c^{2} - 2bc.\cos A = 5a^{2} -2bc\cos A

    \Rightarrow bc = \frac{2a^{2}}{\cos
A}

    Khi đó S = \frac{1}{2}bc\sin A =\frac{1}{2}.\frac{2a^{2}}{\cos A}.\sin A = a^{2}\tan A =3\sqrt{3}.

  • Câu 14: Nhận biết

    Xác định vectơ theo yêu cầu

    Cho bốn điểm A,B,C,D phân biệt. Khi đó vectơ \overrightarrow{u} =
\overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{CB} +
\overrightarrow{DC} bằng:

    Ta có:

    \overrightarrow{u} =
\overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{CB} +
\overrightarrow{DC}

    = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BA} =
\overrightarrow{0}.

  • Câu 15: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Giá trị lượng giác của góc đặc biệt ta có: 

    \left\{ \begin{matrix}cos60^{0} = \frac{1}{2} \\ \sin120^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \cos60^{0} \neq \sin120^{0}

  • Câu 16: Nhận biết

    Khẳng định nào sau đây đúng

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 18: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 19: Thông hiểu

    Đẳng thức vectơ nào sau đây đúng?

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 21: Nhận biết

    Nhận biết bất phương trình bậc hai một ẩn

    Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?

    Bất phương trình bậc hai một ẩn là: 3x^{2} – 12x + 1 ≤ 0

  • Câu 22: Thông hiểu

    Tính chiều cao cột cờ

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 23: Thông hiểu

    Chọn điều kiện đúng

    Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng (\overrightarrow{OA}+\overrightarrow{OB})\overrightarrow{AB}=0 là:

     Chọn đáp án: Tam giác OAB cân tại O.

    Gọi M là trung điểm AB.

    Ta có: \left( {\overrightarrow {OA}  + \overrightarrow {OB} } ight).\overrightarrow {AB}  = 2\overrightarrow {OM} .\overrightarrow {AB}  = 0 (do OM\perp AB).

  • Câu 24: Vận dụng cao

    Tìm giá bán phù hợp

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 25: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Cho \overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}. Xác định x sao cho \overrightarrow{u}\overrightarrow{v} cùng phương.

    Ta có \left\{ \begin{matrix}
\overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{u} = (2;\ \  -
1) \\
\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{v} = (1;\ \ x)
\\
\end{matrix} ight.\ .

    Để \overrightarrow{u}\overrightarrow{v} cùng phương \Leftrightarrow \frac{1}{2} = \frac{x}{- 1}
\Leftrightarrow x = - \frac{1}{2}.

  • Câu 26: Thông hiểu

    Đồ thị của hàm số bậc hai

    Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}. Parabol này quay bề lõm lên trên nếu a > 0.

    Hàm số y = 2x + x^{2}a = 1 > 0

    => Đồ thị hàm số y = 2x + x^{2} có bề lõm quay lên.

  • Câu 27: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Tam thức f(x) =  − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:

    f(x) \leq 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 12m + 36 \leq 0\
\  \Leftrightarrow \ \ m = 6.

  • Câu 28: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp tam giác

    Cho \Delta ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp rcủa tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p}
= \frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 29: Nhận biết

    Xác định vị trí điểm M

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác \Delta ABC.

    Ta có : \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 30: Vận dụng

    Đồ thị của hàm số bậc hai

    Hình nào sau đây là đồ thị của hàm số y=-\frac{1}{2}x^{2}+x?

    Hàm số y=-\frac{1}{2}x^{2}+x? có các hệ số a = − 1 2 −12 < 0, b = 1, c = 0

    a =  - \frac{1}{2} < 0 nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

    Đồ thị của hàm số bậc hai Đồ thị của hàm số bậc hai

    Đồ thị có toạ độ đỉnh {x_S} =  - \frac{b}{{2a}} = 1 tung độ {y_S} =  - \frac{\Delta }{{4a}} = \frac{1}{2} hay S\left( {1;\frac{1}{2}} ight). Do đó ta loại hình vẽ

    Đồ thị của hàm số bậc hai

  • Câu 31: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình thoi ABCD tâm B có cạnh bằng 2 và góc B bằng 60^{0}. Khi đó:

    a) \left(
\overrightarrow{AB},\overrightarrow{AC} \right) = 60{^\circ}. Đúng||Sai

    b) \left(
\overrightarrow{AB},\overrightarrow{DA} \right) = 45{^\circ}. Sai||Đúng

    c) \overrightarrow{DA}.\overrightarrow{DC} =
2. Đúng||Sai

    d) \overrightarrow{OB}.\overrightarrow{BA} = -
3. Đúng||Sai

    Đáp án là:

    Cho hình thoi ABCD tâm B có cạnh bằng 2 và góc B bằng 60^{0}. Khi đó:

    a) \left(
\overrightarrow{AB},\overrightarrow{AC} \right) = 60{^\circ}. Đúng||Sai

    b) \left(
\overrightarrow{AB},\overrightarrow{DA} \right) = 45{^\circ}. Sai||Đúng

    c) \overrightarrow{DA}.\overrightarrow{DC} =
2. Đúng||Sai

    d) \overrightarrow{OB}.\overrightarrow{BA} = -
3. Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    Hình vẽ minh họa

    Xét hình thoi ABCD\widehat{ABC} = 60{^0} \Rightarrow\widehat{BAD} = 120{^\circ};

    \Delta ABCAB = BC = 2,\widehat{ABC} = 60{^\circ} \Rightarrow
\Delta ABC đều có cạnh bằng2
\Rightarrow OB = \frac{2\sqrt{3}}{2} = \sqrt{3}.

    Ta có: \left(
\overrightarrow{AB},\overrightarrow{AC} \right) = \widehat{BAC} =
60{^\circ} \RightarrowCâu a đúng.

    \left(
\overrightarrow{AB},\overrightarrow{DA} \right) = 180{^\circ} - \left(
\overrightarrow{AB},\overrightarrow{AD} \right) = 180{^\circ} -
\widehat{BAD}

    = 180{^\circ} - 120{^\circ} = 60{^\circ}
\RightarrowCâu b sai.

    Ta có: \overrightarrow{DA}.\overrightarrow{DC} = \left|
\overrightarrow{DA} \right|.\left| \overrightarrow{DC} \right|\cos\left(
\overrightarrow{DA},\overrightarrow{DC} \right)

    = DA.DC.cos\widehat{ADC} =
2.2.cos60{^\circ} = 2 \RightarrowCâu c đúng.

    \overrightarrow{OB}.\overrightarrow{BA}
= - \overrightarrow{BO}.\overrightarrow{BA} = - \left|
\overrightarrow{BO} \right|.\left| \overrightarrow{BA}
\right|.cos\widehat{ABO}

    = - BO.BA.cos30{^\circ} = -
\sqrt{3}.2.\frac{\sqrt{3}}{2} = - 3 \RightarrowCâu d đúng.

  • Câu 32: Thông hiểu

    Tính giá trị biểu thức

    Cho tam giác đều ABC cạnh a. Gọi G là trọng tâm. Khi đó giá trị \left| \overrightarrow{AB} - \overrightarrow{GC}
\right| là:

    Hình vẽ minh họa:

    Ta có: \left| \overrightarrow{AB} -
\overrightarrow{GC} \right| = \left| \overrightarrow{AH} +
\overrightarrow{HB} + \overrightarrow{CG} \right|

    = \left| \overrightarrow{AC} +
\overrightarrow{CB} + \overrightarrow{CG} \right| = \left|
\overrightarrow{AG} + \overrightarrow{CB} \right|

    = 2\left| \overrightarrow{GH} +
\overrightarrow{HB} \right| = 2\left| \overrightarrow{GB} \right| =
2.\frac{a\sqrt{3}}{3} = \frac{2a\sqrt{3}}{3}.

  • Câu 33: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 34: Nhận biết

    Tính độ dài vectơ

    Cho hình chữ nhật ABCDAB = 3,BC = 4. Độ dài của vectơ \overrightarrow{AC} là:

    Ta có: \left| \overrightarrow{AC} \right|
= AC = \sqrt{AB^{2} + BC^{2}} = \sqrt{3^{2} + 4^{2}} = 5.

  • Câu 35: Thông hiểu

    Tìm tập mệnh đề đúng

    Cho tập hợp A = \left\{ 1;3 \right\},B =
\left\{ 0;1;3 \right\},C = \left\{ x\mathbb{\in R}\left| \left( x^{2} -
4x + 3 \right) = 0 \right.\  \right\}. Tập mệnh đề đúng

    Giải phương trình x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.x\mathbb{\in R} nên A = \left\{ 1;3 \right\}do đó chọn đáp án A = C..

  • Câu 36: Thông hiểu

    Tính diện tích tam giác

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 37: Vận dụng cao

    Rút gọn biểu thức

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 38: Thông hiểu

    Tìm điểm thỏa mãn

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 39: Vận dụng cao

    Tìm giá trị m thỏa mãn điều kiện

    Cho A = \left\{x\in\mathbb{ R}||mx - 3| = mx - 3 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - 4 = 0ight\}. Tìm m để B\backslash A = B.

    Ta có:

    |mx - 3| = mx - 3

    \Leftrightarrow mx - 3 \geq
0

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {m > 0,x \geqslant \dfrac{3}{m}} \\ 
  {m < 0,x \leqslant \dfrac{3}{m}} 
\end{array}} ight.

    Do đó m < 0 thì A = \left( - \infty;\frac{3}{m}
ightbrack; nếu m >
0 thì A = \left\lbrack \frac{3}{m};
+ \infty ight)

    Ta có:x^{2} - 4 = 0 \Leftrightarrow m =
\pm 2\mathbb{\in R}

    Do đó B = \left\{ - 2;2
ight\}

    Ta có: B\backslash A = B \Leftrightarrow
\left\lbrack \begin{matrix}
A eq \varnothing(*) \\
\left\{ \begin{matrix}
- 2 otin A \\
2 otin A \\
\end{matrix}(**) ight.\  \\
\end{matrix} ight.

    TH1: (*) \Leftrightarrow M =
0

    TH2: Nếu m < 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 > \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight.

    \Leftrightarrow - 2 > \frac{3}{m}
\Leftrightarrow m > - \frac{3}{2}

    Tóm lại - \frac{3}{2} < m <
0 thì thỏa mãn yêu cầu bài toán.

    TH3: Nếu m > 0 thì \left( {**} ight) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  { - 2 < \dfrac{3}{m}} \\ 
  {2 > \dfrac{3}{m}} 
\end{array}} ight. \Rightarrow 2 < \dfrac{3}{m} \Rightarrow m < \frac{3}{2}

    Kết hợp ba trường hợp, vậy - \frac{3}{2}
< m < \frac{3}{2} thì thỏa mãn yêu cầu bài toán.

  • Câu 40: Nhận biết

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 41: Vận dụng

    Tìm khẳng định sai

    Cho tam giác ABC, với M,\ \ N,\ \ P lần lượt là trung điểm của BC,\ \ CA,\ \ AB. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Xét các đáp án:

    • Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{AC} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    • Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có

    \begin{matrix}
\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA} \\
= \frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} \right) = \frac{1}{2}\overrightarrow{AA} =
\overrightarrow{0}.
\end{matrix}

    • Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} = \overrightarrow{0}. Ta có \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.

    Ta có \overrightarrow{PB} +
\overrightarrow{MC} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AC} =
\overrightarrow{AN} = \overrightarrow{PM} = -
\overrightarrow{MP}\mathbf{.}

  • Câu 42: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCD với I là giao điểm của 2 đường chéo. Khẳng định nào sau đây là khẳng định sai?

    Ta có: \overrightarrow{AC},\
\overrightarrow{BD} không cùng phương và độ lớn nên \overrightarrow{AC} \neq
\overrightarrow{BD}.

  • Câu 43: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 44: Nhận biết

    Tìm giao của hai tập hợp

    Cho tập hợp X = \left\{ a;b \right\},Y =
\left\{ a;b;c \right\}. X \cup
Y là tập hợp nào sau đây?

    X \cup Y là tập hợp gồm các phần tử thuộc X hoặc thuộc Y

  • Câu 45: Nhận biết

    Phát biểu mệnh đề

    Mệnh đề "\exists x\mathbb{\in
R},x^{2} = 5" khẳng định rằng:

    Mệnh đề "\exists x\mathbb{\in
R},x^{2} = 5" khẳng định rằng: “Có ít nhất một số thực mà bình phương của nó bằng 5.”

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo