Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính số đo góc B

    Cho tam giác ABC, biết a = 13,b = 14,c = 15. Tính góc B

    Ta có:

    \cos B = \frac{a^{2} + c^{2} -
b^{2}}{2ac} = \frac{13^{2} + 15^{2} - 14^{2}}{2.13.15} =
\frac{33}{65}

    \Rightarrow B \simeq 59^{0}29'

  • Câu 2: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 3: Nhận biết

    Tính tích vô hướng giữa hai vectơ

    Cho tam giác ABC vuông tại B, BC =
a\sqrt{3}. Tính \overrightarrow{AC}.\overrightarrow{CB}?

    Hình vẽ minh họa:

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} \right|\left| \overrightarrow{CB}
\right|.cos\left( \overrightarrow{AC},\overrightarrow{CB}
\right)

    = \left| \overrightarrow{AC}
\right|\left| \overrightarrow{CB} \right|.cos\left( 180{^\circ} -
\widehat{C} \right)

    = - \left| \overrightarrow{AC}
\right|\left| \overrightarrow{CB} \right|.cos\widehat{C} = - \left|
\overrightarrow{AC} \right|\left| \overrightarrow{CB}
\right|.\frac{BC}{AC} = - BC^{2} = - 3a^{2}.

  • Câu 4: Thông hiểu

    Tìm số nghiệm của phương trình

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 5: Vận dụng

    Tìm tọa độ điểm A

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 6: Thông hiểu

    Chọn phương án thích hợp

    Cho hai tập hợp M,\ N thỏa mãn M \subset N. Mệnh đề nào sau đây đúng?

    Biểu đồ Ven:

    Vậy đáp án cần tìm là: M \cap N =
M.

  • Câu 7: Thông hiểu

    Tìm tọa độ vectơ thoả mãn

    Trong hệ tọa độ Oxy, cho tam giác ABC\
B(9;7),\ C(11; - 1). Gọi M,N lần lượt là trung điểm của AB,\ AC. Tìm tọa độ vectơ \overrightarrow{MN}?

    Ta có \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(2; - 8) = (1; -
4).

  • Câu 8: Vận dụng

    Chọn đáp án thích hợp

    Cho mệnh đề chứa biến P(x) = \left\{
x\mathbb{\in Z}:\left| x^{2} - 2x - 3 \right| = x^{2} + |2x + 3|
\right\}. Trong đoạn \lbrack -
2020;2021\rbrack có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?

    Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình \left| x^{2} - 2x -
3 \right| = x^{2} + |2x + 3|\ \ (1)

    + Nếu x \geq - \frac{3}{2} thì ta có

    (1) \Leftrightarrow \left| x^{2} - 2x -
3 \right| = x^{2} + 2x + 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x - 3 = x^{2} + 2x + 3 \\
- x^{2} + 2x + 3 = x^{2} + 2x + 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - \frac{3}{2} \\
x = 0 \\
\end{matrix} \right..

    + Nếu x < - \frac{3}{2} thì ta có (1) \Leftrightarrow \left| x^{2} - 2x
- 3 \right| = x^{2} - 2x - 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:

    (1) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 2x - 3 \geq 0 \\
x < - \frac{3}{2} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 1 \\
x \geq 3 \\
\end{matrix} \right.\  \\
x < - \frac{3}{2} \\
\end{matrix} \right.\  \Leftrightarrow x < - \frac{3}{2}

    Phương trình đã cho có tập nghiệm nguyên trên đoạn \lbrack - 2020;2021\rbrackS = \left\{ 0; - 2; - 3;...; - 2020
\right\}.

    Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 10: Thông hiểu

    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 11: Vận dụng

    Tìm m thỏa mãn điều kiện

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

  • Câu 12: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 13: Thông hiểu

    Xác định tổng các vecto

    Tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} bằng vectơ nào sau đây?

    Ta có

    \overrightarrow{MN} + \overrightarrow{PQ}
+ \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}

    = \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} +
\overrightarrow{RN}

    = \overrightarrow{MN}.

  • Câu 14: Nhận biết

    Chọn đáp án thích hợp

    Câu nào trong các câu sau không phải là mệnh đề?

    Câu không phải mệnh đề là: “\pi có phải là một số vô tỷ không?”.

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Cho \overrightarrow{a} = ( -
1;2),\overrightarrow{b} = (5; - 7). Tọa độ của vec tơ \overrightarrow{a} - \overrightarrow{b} là:

    Ta có: \overrightarrow{a} -
\overrightarrow{b} = ( - 1 - 5;2 + 7) = ( - 6;9).

  • Câu 16: Nhận biết

    Chọn phương án thích hợp

    Tính chất đặc trưng của tập hợp X =
\left\{ \frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};....
\right\}.

    Ta liệt kê các phần tử từng đáp án, đáp án nào thỏa yêu cầu bài toán ta sẽ chọn.

    Đáp án cần tìm là: \left\{ {x \in \mathbb{Q}\left| {x = \frac{1}{{2n}};n \in \mathbb{N}*} \right.} \right\}..

  • Câu 17: Thông hiểu

    Hệ thức nào sau đây là sai?

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 18: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 19: Thông hiểu

    Thực hiện phép tính

    Cho tam giác đều ABC cạnh a. Khi đó \left| \overrightarrow{AB} - \overrightarrow{CA}
\right| =

    Gọi I là trung điểm BC.

    Ta có:

    \left| \overrightarrow{AB} -
\overrightarrow{CA} \right| = \left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = 2\left| \overrightarrow{AM} \right| =
2.\frac{a\sqrt{3}}{2} = a\sqrt{3}.

  • Câu 20: Nhận biết

    Khẳng định nào sau đây đúng?

    Cho \overrightarrow{AB} = -
\overrightarrow{CD}. Khẳng định nào sau đây đúng?

    Ta có \overrightarrow{AB} = -
\overrightarrow{CD} = \overrightarrow{DC}. Do đó:

    \overrightarrow{AB}\overrightarrow{CD} ngược hướng.

    \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

    ABCD là hình bình hành nếu \overrightarrow{AB}\overrightarrow{CD} không cùng giá.

    \overrightarrow{AB} + \overrightarrow{CD}
= \overrightarrow{0}.

    Chọn đáp án \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

  • Câu 21: Nhận biết

    Chọn khẳng định sai

    Cho \Delta ABC vuông tại A, góc B bằng 30^{0}. Khẳng định nào sau đây là sai?

    Ta có:

    \widehat{A} + \widehat{B} =
90^{0}

    \Rightarrow \cos\widehat{B} = \sin\left(
90^{0} - \widehat{A} \right) = \sin\left( 90^{0} - 30^{0} \right) =
sin60^{0} = \frac{\sqrt{3}}{2}.

  • Câu 22: Nhận biết

    Tìm trục đối xứng

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 23: Vận dụng cao

    Tìm số nghiệm của phương trình

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 24: Vận dụng cao

    Tính giá trị biểu thức

    Biểu thức f(x) = 3\left(\sin^{4}x +\cos^{4}x \right) - 2\left( \sin^{6}x + \cos^{6}x \right) có giá trị bằng:

    Ta có:

    \sin^{4}x + \cos^{4}x = 1 -2\sin^{2}x\cos^{2}x.

    \sin^{6}x + \cos^{6}x = 1 -3\sin^{2}x\cos^{2}x.

    f(x) = 3\left( 1 - 2\sin^{2}x\cos^{2}x\right) - 2\left( 1 - 3\sin^{2}x\cos^{2}x \right) = 1.

  • Câu 25: Thông hiểu

    Tìm m để hàm số đồng biến

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 26: Nhận biết

    Xét tính đúng, sai của hai mệnh đề A và B.

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 27: Thông hiểu

    Tính độ dài vectơ

    Cho tam giác ABC, có bao nhiêu điểm M thỏa \left|
\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|
= 5?

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 5\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 5\Leftrightarrow MG = \frac{5}{3}, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng \frac{5}{3} .

  • Câu 28: Nhận biết

    Chọn khẳng định đúng

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 29: Thông hiểu

    Giải hệ bất phương trình bậc nhất hai ẩn

    Khoảng giá trị của x khi y = 1 trong hệ bất phương trình \left\{\begin{matrix}x+y\geq 1\\ 2x-3y<5\end{matrix}ight. là:

    Với y=1 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 1 \geqslant 1} \\   {2x - 3.1 < 5} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {2x < 8} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {x < 4} \end{array} \Leftrightarrow x \in \left[ {0;4} ight)} ight. \hfill \\ \end{matrix}

    Vậy khi y = 1 thì khoảng giá trị của x là {\left[ {0;4} ight)}.

  • Câu 30: Vận dụng cao

    Tìm công thức hàm số bậc hai

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 31: Vận dụng

    Tính độ lớn của vectơ

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b}. Biết \left| \overrightarrow{a} ight| =2 , \left| \overrightarrow{b} ight|= \sqrt{3}\left( \overrightarrow{a},\overrightarrow{b}
ight) = 120^{o}. Tính\left|
\overrightarrow{a} + \overrightarrow{b} ight|.

    Ta có: \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{7 - 2\sqrt{3}}.

  • Câu 32: Thông hiểu

    Tìm công thức hàm số bậc hai

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 33: Thông hiểu

    Tìm hệ bất phương trình thỏa mãn đề bài

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 34: Nhận biết

    Chọn khẳng định đúng

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 35: Vận dụng

    Tính diện tích tam giác

    Tam giác ABCBC = a,\ CA = b,\ AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Diện tích tam giác ABC ban đầu là:

    S = \frac{1}{2}.AC.BC.sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là

    S_{\Delta ABC} =\frac{1}{2}.(3AC).(2BC).\sin\widehat{ACB}

    = 6.\frac{1}{2}.AC.BC.\sin\widehat{ACB} =6S

  • Câu 36: Nhận biết

    Điều kiện cần và đủ để ba điểm thẳng hàng.

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 37: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.

    Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).

    Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1

     ⇔ (1)2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
m^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m = \pm 2 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 38: Thông hiểu

    Cặp số nào là nghiệm của bất phương trình

    Cặp số nào sau đây là nghiệm của bất phương trình 3x - 5y > 12?

    Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:

    3.0 - 5.3 =  - 15 < 12

    Vậy (0;3) không là cặp nghiệm của bất phương trình

    Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:

    3.6- 5.1=13> 12

    Vậy (6; 1) là cặp nghiệm của bất phương trình.

    Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:

    3.2 - 5.4 =  - 14 < 12

    Vậy (2; 4) không là cặp nghiệm của bất phương trình.

    Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:

    3.3 - 5.2 =  - 1 < 12

    Vậy (3; 2) không là cặp nghiệm của bất phương trình.

  • Câu 39: Thông hiểu

    Tìm x để mệnh đề đúng

    Với giá trị nào của x\mathbb{\in
R} thì mệnh đề chứa biến P(\ x\ ):\
\ "x + 1 < x^{2}" là đúng?

    Với x = 0 ta có P(\ 0\ ):\ \ "0 + 1 < 0^{2}" (Sai).

    Với x = 2 ta có P(\ 2\ ):\ \ "2 + 1 < 2^{2}" (Đúng).

    Với x = 1 ta có P(\ 1\ ):\ \ "1 + 1 < 1^{2}" (Sai).

    Với x = \frac{1}{2} ta có P\left( \ \frac{1}{2}\  \right):\ \
"\frac{1}{2} + 1 < \left( \frac{1}{2} \right)^{2}" (Sai).

  • Câu 40: Thông hiểu

    Tìm tập nghiệm của phương trình

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 41: Thông hiểu

    Tính cosin góc giữa 2 vectơ

    Tam giác ABC vuông ở A và có BC =
2AC. Tính \cos\left(
\overrightarrow{AC},\overrightarrow{CB} \right).

    Hình vẽ minh họa:

    Xác định được \left(
\overrightarrow{AC},\overrightarrow{CB} \right) = 180^{0} -
\widehat{ACB}

    Ta có \cos\widehat{ACB} = \frac{AC}{CB} =
\frac{1}{2} \Rightarrow \widehat{ACB} = 60^{0}

    \rightarrow \left(
\overrightarrow{AC},\overrightarrow{CB} \right) = 180^{0} -
\widehat{ACB} = 120^{0}

    Vậy \cos\left(\overrightarrow{AC},\overrightarrow{CB} \right) = \cos120^{0} = -\frac{1}{2}

  • Câu 42: Vận dụng

    Khẳng định nào sau đây đúng?

    Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?

    Tam giác ABC đều cạnh a nên độ dài đường trung tuyến bằng \frac{a\sqrt{3}}{2}.

    Chọn \left| \overrightarrow{AM} ight| =
\frac{a\sqrt{3}}{2}.

  • Câu 43: Vận dụng cao

    Tìm tất cả các giá trị của tham số m

    Cho hai tập hợp khác rỗng A = \lbrack m - 3;1),B = ( - 3;4m + 5) với m\mathbb{\in R}. Tìm tất cả các giá trị của tham số m để tập A là tập con của tập B.

    A,B khác rỗng và A \subset B nên

    \left\{ \begin{matrix}
m - 3 < 1 \\
- 3 < 4m + 5 \\
- 3 < m - 3 \\
1 \leq 4m + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 4 \\
m > - 2 \\
m > 0 \\
m \geq - 1 \\
\end{matrix} \Leftrightarrow 0 < m < 4 ight.

    Vậy giá trị m cần tìm là 0 < m < 4.

  • Câu 44: Nhận biết

    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 45: Thông hiểu

    Tìm a thỏa mãn điều kiện

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo