Chọn mệnh đề không phải mệnh đề toán học
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!
Chọn mệnh đề không phải mệnh đề toán học
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Tìm tọa độ điểm C
Trong hệ tọa độ
cho tam giác
có
,
và
thuộc trục
, trọng tâm
của tam giác thuộc trục
. Tìm tọa độ điểm ![]()
Vì thuộc trục
có hoành độ bằng
. Loại
.
Trọng tâm thuộc trục
có tung độ bằng
Xét các đáp án còn lại chỉ có đáp án
thỏa mãn
Tìm số nghiệm của phương trình
Phương trình
có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Tìm m để phương trình có nghiệm
Tập tất cả các giá trị của tham số m để phương trình
có nghiệm thực là
* Với m < 2 ⇒ phương trình vô nghiệm
* Với m ≥ 2,
.
Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.
Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2; + ∞).
Chọn công thức đúng
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Tính tổng tọa độ vectơ
Cho 6 điểm
. Tổng vectơ:
bằng:
Ta có:
.
Mệnh đề nào sau đây đúng?
Cho
là số thực mệnh đề nào sau đây đúng?
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Chọn đáp án
Tích tích vô hướng của hai vectơ
Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính
.
Do ABCD là hình chữ nhật =>
Xét tam giác ABD vuông tại A ta có:
Ta lại có:
Tính giá trị biểu thức
Biểu thức:
có giá trị bằng:
Ta có:
.
Tính độ dài cạnh b
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tìm nghiệm của bất phương trình
Nghiệm của bất phương trình
có
Bảng xét dấu

Suy ra
.
Vậy nghiệm của bất phương trình có 3 khoảng.
Tìm số câu là mệnh đề
Trong các câu sau, có bao nhiêu câu là mệnh đề?
Hãy cố gắng học thật tốt!
Số
chia hết cho
.
Số
là số nguyên tố.
Số
là số chẵn.
Có hai mệnh đề là
Số chia hết cho
.
Số là số nguyên tố.
Tính diện tích tam giác ABC
Tam giác
có hai đường trung tuyến
vuông góc với nhau và có
, góc
. Tính diện tích tam giác
.
Vì . (Áp dụng hệ quả đã có trước)
Trong tam giác , ta có
Khi đó .
Xác định vectơ theo yêu cầu
Cho bốn điểm
phân biệt. Khi đó vectơ
bằng:
Ta có:
.
Tìm khẳng định sai
Trong các khẳng định sau, khẳng định nào sai?
Giá trị lượng giác của góc đặc biệt ta có:
Khẳng định nào sau đây đúng
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Tìm tập xác định
Tập xác định của hàm số
là
Hàm số có nghĩa khi
⇔ x ∈ [ − 1; 3) ∖ {2}.
Tìm hàm số thỏa mãn điều kiện
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Đẳng thức vectơ nào sau đây đúng?
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Đẳng thức vectơ nào sau đây đúng?
Ta có
Mặt khác và
cùng hướng
hay
.
Chọn khẳng định đúng
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Nhận biết bất phương trình bậc hai một ẩn
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Tính chiều cao cột cờ
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Chọn điều kiện đúng
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng
là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Tìm giá bán phù hợp
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Tìm x thỏa mãn điều kiện
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Đồ thị của hàm số bậc hai
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.
Tìm m thỏa mãn điều kiện
Tam thức f(x) = − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:
.
Tính độ dài bán kính đường tròn nội tiếp tam giác
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Xác định vị trí điểm M
Cho tam giác
có
thỏa mãn điều kiện
. Xác định vị trí điểm ![]()
Gọi là trọng tâm tam giác
.
Ta có : .
Đồ thị của hàm số bậc hai
Hình nào sau đây là đồ thị của hàm số ![]()
Hàm số có các hệ số
Vì nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

Đồ thị có toạ độ đỉnh tung độ
hay
. Do đó ta loại hình vẽ

Xét tính đúng sai của các khẳng định
Cho hình thoi
tâm
có cạnh bằng 2 và góc
bằng
. Khi đó:
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Cho hình thoi
tâm
có cạnh bằng 2 và góc
bằng
. Khi đó:
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Hình vẽ minh họa

Xét hình thoi có
;
có
đều có cạnh bằng
.
Ta có: Câu a đúng.
Câu b sai.
Ta có:
Câu c đúng.
Câu d đúng.
Tính giá trị biểu thức
Cho tam giác đều
cạnh
. Gọi
là trọng tâm. Khi đó giá trị
là:
Hình vẽ minh họa:

Ta có:
.
Tìm số nghiệm của phương trình
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Tính độ dài vectơ
Cho hình chữ nhật
có
. Độ dài của vectơ
là:
Ta có: .
Tìm tập mệnh đề đúng
Cho tập hợp
. Tập mệnh đề đúng
Giải phương trình mà
nên
do đó chọn đáp án
.
Tính diện tích tam giác
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Rút gọn biểu thức
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Tìm điểm thỏa mãn
Điểm nào sau đây thuộc miền nghiệm của bất phương trình
?
Xét điểm . Ta có:
nên
thuộc miền nghiệm của bất phương trình đã cho.
Tìm giá trị m thỏa mãn điều kiện
Cho
,
. Tìm
để
.
Ta có:
Do đó thì
; nếu
thì
Ta có:
Do đó
Ta có:
TH1:
TH2: Nếu thì
Tóm lại thì thỏa mãn yêu cầu bài toán.
TH3: Nếu thì
Kết hợp ba trường hợp, vậy thì thỏa mãn yêu cầu bài toán.
Tìm điểm không thuộc miền nghiệm
Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Tìm khẳng định sai
Cho tam giác
, với
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Xét các đáp án:
• Đáp án . Ta có
• Đáp án . Ta có
• Đáp án . Ta có
Đáp án .
Ta có
Tìm khẳng định sai
Cho hình bình hành
với
là giao điểm của 2 đường chéo. Khẳng định nào sau đây là khẳng định sai?
Ta có: không cùng phương và độ lớn nên
.
Tìm điểm thỏa mãn
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Tìm giao của hai tập hợp
Cho tập hợp
.
là tập hợp nào sau đây?
Vì là tập hợp gồm các phần tử thuộc X hoặc thuộc Y
Phát biểu mệnh đề
Mệnh đề
khẳng định rằng:
Mệnh đề khẳng định rằng: “Có ít nhất một số thực mà bình phương của nó bằng 5.”
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: