Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xác định mệnh đề phủ định của mệnh đề đã cho

    Mệnh đề P(x):"\forall x\mathbb{\in
R},x^{2} - x + 3 < 0". Phủ định của mệnh đề P(x) là:

    Phủ định của P(x):"\forall
x\mathbb{\in R},x^{2} - x + 3 < 0"\overline{P(x)}: "\forall x \in \mathbb{R},{\text{ }}{x^2} - x + 3 \geqslant 0"

  • Câu 2: Nhận biết

    Tìm tọa độ vectơ

    Cho \overrightarrow{a} = (3; -
4),\overrightarrow{b} = ( - 1;2). Tọa độ của vec tơ \overrightarrow{a} + \overrightarrow{b} là:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1);( - 4) + 2 \right) = (2; -
2).

  • Câu 3: Nhận biết

    Chọn đáp án đúng

    Cho hình bình hành ABCD,với giao điểm hai đường chéo là I. Khi đó:

    Ta có: \overrightarrow{AB} +
\overrightarrow{IA} = \overrightarrow{IB} , \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC} , \overrightarrow{AB} + \overrightarrow{CD} =
\overrightarrow{0} .

  • Câu 4: Vận dụng cao

    Tìm công thức hàm số bậc hai

    Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5m\left| 2x^{2} + x - 3 ight| = \left\{
\begin{matrix}
2x^{2} + x - 3 & khi & 2x^{2} + x - 3 \geq 0 \\
- \left( 2x^{2} + x - 3 ight) & khi & 2x^{2} + x - 3 < 0 \\
\end{matrix} ight. giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.

    Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

    hệ trục Oth như hình vẽ.

    Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.

    Giả sử tại thời điểm t thì quả bóng đạt độ cao lớn nhất h.

    Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0;  1,2) ∈ (P).

    Tại t = 1 thì h = 8, 5 nên B(1;  8,5) ∈ (P).

    Tại t = 2 thì h = 6 nên C(2;  6) ∈ (P).

    Vậy ta có hệ: \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
a + b + c = 8,5 \\
4a + 2b + c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 1,2\ \ \ \ \ \ \  \\
a = - 4,9\  \\
b = 12,2\  \\
\end{matrix} ight..

    Vậy hàm số Parabol cần tìm có dạng: y =  − 4, 9t2 + 12, 2t + 1, 2.

  • Câu 5: Thông hiểu

    Tìm m để tam thức bậc hai luôn dương với mọi x

    Tìm tất cả các giá trị của m để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}.

    Để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Xét g\left( x ight) = 1 - 4{x^2} ta có bảng xét dấu như sau:

    Tìm m để tam thức bậc hai luôn dương với mọi x

    g\left( x ight) < 0 \Rightarrow x \in \left( { - \infty ; - \frac{1}{2}} ight) \cup \left( {\frac{1}{2}; + \infty } ight)

    Kết hợp các điều kiện ta được m \in \left( {\frac{1}{2}; + \infty } ight)

  • Câu 6: Thông hiểu

    Tìm khẳng định đúng

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =3 có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq \frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3\Leftrightarrow t + t + 3 +2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}3 - t \geq 0 \\t(t + 3) = (3 - t)^{2} \\\end{matrix} ight. \left\{ \begin{matrix}t \leq 3 \\t = 1 \\\end{matrix} ight.  ⇔ t = 1(thỏa mãn)

     ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}x = 1 = x_{1} \\x = 2 = x_{2} \\\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 7: Thông hiểu

    Tìm khẳng định sai

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} \right). Khẳng định nào sau đây sai?

    Phương án \overrightarrow{AB} = ( - 3; -
2), \overrightarrow{AC} = \left( 3;
- \frac{9}{2} \right): \overrightarrow{AB} = ( - 3; - 2), nên loại.

    Phương án \overrightarrow{AB}.\overrightarrow{AC} =
0: \overrightarrow{AB}.\overrightarrow{AC} =
0 nên loại.

    Phương án \left| \overrightarrow{AB}
\right| = \sqrt{13}: \left|
\overrightarrow{AB} \right| = \sqrt{13} nên loại.

    Phương án \left| \overrightarrow{BC}
\right| = \frac{\sqrt{13}}{2}: Ta có \overrightarrow{BC} = \left( 6; - \frac{5}{2}
\right) suy ra BC = \sqrt{6^{2} +
\left( \frac{5}{2} \right)^{2}} = \frac{13}{2}nên chọn.

  • Câu 8: Thông hiểu

    Tìm điểm thỏa mãn

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 9: Vận dụng

    Tìm khẳng định sai

    Cho tam giác ABC, với M,\ \ N,\ \ P lần lượt là trung điểm của BC,\ \ CA,\ \ AB. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Xét các đáp án:

    • Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{AC} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    • Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có

    \begin{matrix}
\overrightarrow{AP} + \overrightarrow{BM} + \overrightarrow{CN} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA} \\
= \frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} \right) = \frac{1}{2}\overrightarrow{AA} =
\overrightarrow{0}.
\end{matrix}

    • Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} = \overrightarrow{0}. Ta có \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.

    Ta có \overrightarrow{PB} +
\overrightarrow{MC} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AC} =
\overrightarrow{AN} = \overrightarrow{PM} = -
\overrightarrow{MP}\mathbf{.}

  • Câu 10: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm các giá trị của m để biểu thức sau luôn dương

    h(x) = \frac{- x^{2} + 4(m + 1)x + 1 -
4m^{2}}{- 4x^{2} + 5x - 2}

    Tam thức  − 4x2 + 5x − 2a =  − 4 < 0,  Δ =  − 7 < 0

    suy ra  − 4x2 + 5x − 2 < 0  ∀x

    Do đó h(x) luôn dương khi và chỉ khi h′(x) =  − x2 + 4(m+1)x + 1 − 4m2 luôn âm

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 < 0 \\
\Delta' = 4(m + 1)^{2} + \left( 1 - 4m^{2} ight) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 8m + 5 < 0 \Leftrightarrow m
< - \frac{5}{8}

    Vậy với m < - \frac{5}{8} thì biểu thức h(x) luôn dương.

  • Câu 11: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị m

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 12: Vận dụng

    Tính chiều cao tòa nhà

    Trên nóc một tòa nhà có một cột ăng-ten cao 5\ m . Từ vị trí quan sát A cao 7\
m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50^{0}40^{0} so với phương nằm ngang.

    Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

    Từ hình vẽ, suy ra \widehat{BAC} =
10^{0}

    \widehat{ABD} = 180^{0} - \left(
\widehat{BAD} + \widehat{ADB} \right) = 180^{0} - \left( 50^{0} + 90^{0}
\right) = 40^{0}.

    Áp dụng định lí sin trong tam giác ABC, ta có

    \frac{BC}{\sin\widehat{BAC}} =
\frac{AC}{\sin\widehat{ABC}}

    \Rightarrow AC =\frac{BC.\sin\widehat{ABC}}{\sin\widehat{BAC}} =\frac{5.\sin40^{0}}{\sin10^{0}} \approx 18,5 m.

    Trong tam giác vuông ADC, ta có \sin\widehat{CAD} =
\frac{CD}{AC}

    \Rightarrow CD = AC.\sin\widehat{CAD} =11,9\ m.

    Vậy CH = CD + DH = 11,9 + 7 = 18,9\
m.

  • Câu 13: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 14: Thông hiểu

    Tính độ dài cạnh AC

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 15: Vận dụng cao

    Tìm m để phương trình có nghiệm

    Các giá trị của tham số m để phương trình (2x - 1)^{2} + m = \sqrt{x^{2} - x +
1} (1) có nghiệm là:

    Đặt t = \sqrt{x^{2} - x + 1}

     ⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3

    x^{2} - x + 1 = \left( x - \frac{1}{2}
ight)^{2} + \frac{3}{4} \geq \frac{3}{4} nên t \geq \frac{\sqrt{3}}{2}

    Phương trình (1) trở thành 4t2 − 3 + m = t ⇔  − 4t2 + t + 3 = m.

    Xét hàm số y =  − 4t2 + t − 3 với t \geq \frac{\sqrt{3}}{2}

    Ta có - \frac{b}{2a} = \frac{1}{8} <
\frac{\sqrt{3}}{2}

    Bảng biến thiên

    Phương trình (1) có nghiệm phương trình có nghiệm t \geq
\frac{\sqrt{3}}{2}

    đồ thị hàm số y =  − 4t2 + t − 3 trên \lbrack\frac{\sqrt{3}}{2}; +
\infty) cắt đường thẳng y = m
\Leftrightarrow m \leq \frac{- 12 + \sqrt{3}}{2} .

    Vậy phương trình (1) có nghiệm khi và chỉ khi m \leq \frac{- 12 + \sqrt{3}}{2}.

  • Câu 16: Thông hiểu

    Giải phương trình

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 17: Thông hiểu

    Tìm quỹ tích điểm M

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 18: Nhận biết

    Xác định bất đẳng thức đúng

    Bất đẳng thức nào dưới đây là đúng?

    Câu đúng là: \cos95^{0} > \cos100^{0}.

  • Câu 19: Vận dụng cao

    Tìm giá trị nhỏ nhất m và lớn nhất M

    Cho hai số thực x, y thoả mãn x \in \lbrack 1;2brack,y \in \lbrack
5;7brack. Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức P = |2x - y|.

    Từ giả thiết suy ra 2x \in \lbrack
2;4bracky \in \lbrack
5;7brack, P chính là khoảng cách giữa 2 số 2xy trên trục số.

    P nhỏ nhất khi 2x = 4y =
5; P lớn nhất khi 2x = 2y =
7.

    Vậy m = 1,M = 5.

  • Câu 20: Thông hiểu

    Tìm vị trí điểm M

    Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: \overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}

    Ta có:

    I là trung điểm của AB => \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}

    Khi đó:

    \begin{matrix}  \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow \overrightarrow {MI}  + \overrightarrow {MC}  = \vec 0 \hfill \\ \end{matrix}

    Vậy M là trung điểm của IC.

  • Câu 21: Thông hiểu

    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 22: Nhận biết

    Tìm đẳng thức đúng

    Nếu G là trọng tam giác ABC thì đẳng thức nào sau đây đúng.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC nên ta có

    \overrightarrow{AB}+\overrightarrow{AC} = 2\overrightarrow{AM}

    \overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} \Rightarrow \overrightarrow{AB} +
\overrightarrow{AC} = 2.\frac{3}{2}\overrightarrow{AG} =
3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AG} =
\frac{\overrightarrow{AB} + \overrightarrow{AC}}{3}.

  • Câu 23: Nhận biết

    Tính tổng các vectơ

    Vectơ tổng \overrightarrow{MN} +
\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR} bằng:

    Ta có:

    \overrightarrow{MN} +
\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}

    = \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} +
\overrightarrow{RN} = \overrightarrow{MN} + \overrightarrow{0} =
\overrightarrow{MN}

     

  • Câu 24: Nhận biết

    Test

    Câu 1câu 2

    Đáp án là:

    Câu 1câu 2

  • Câu 25: Nhận biết

    Chọn phương án đúng

    Mệnh đề phủ định của 0" là

    Mệnh đề 0", phủ định của mệnh đề P\overline{P}:"\exists x\mathbb{\in R},\ x^{2}
\leq 0".

  • Câu 26: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.

    Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).

    Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1

     ⇔ (1)2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' = (m + 1)^{2} - \left( m^{2} - 3 ight) > 0 \\
m^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m = \pm 2 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 27: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 28: Nhận biết

    Tìm khẳng định đúng

    Chọn khẳng định đúng.

    Vectơ là một đoạn thẳng có hướng.

  • Câu 29: Thông hiểu

    Xác định vectơ

    Cho bốn điểm A,\ B,\ C,\ D phân biệt. Khi đó vectơ \overrightarrow{u} =
\overrightarrow{AD} - \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{AB} bằng:

    Ta có:

    \overrightarrow{u} = \overrightarrow{AD}
- \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{AB}

    = \overrightarrow{AD} -
\overrightarrow{AB} + \overrightarrow{CB} - \overrightarrow{CD} =
\overrightarrow{BD} + \overrightarrow{DB} =
\overrightarrow{0}.

  • Câu 30: Nhận biết

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 31: Nhận biết

    Chọn khẳng định đúng

    Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?

    Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0,  ∀x ∈ ℝ.

  • Câu 32: Thông hiểu

    Tìm công thức hàm số bậc hai

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.

  • Câu 33: Thông hiểu

    Chọn khẳng định đúng

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 34: Thông hiểu

    Xác định số phần tử của tập hợp

    Tập hợp A = \left\{ \left. \ x\mathbb{\in
N} \right|(x - 1)(x + 2)\left( x^{3} + 4x \right) = 0 \right\} có bao nhiêu phần tử?

    Ta có (x - 1)(x + 2)\left( x^{3} + 4x
\right) = 0 \Leftrightarrow x(x - 1)(x + 2)\left( x^{2} + 4 \right) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x - 1 = 0 \\
x + 2 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
x = 0 \\
\end{matrix} \right. (do x^{2} +
4 > 0,\forall x\mathbb{\in R}).

    x\mathbb{\in N \Rightarrow}x =
0; x = 1.

    Vậy A = \left\{ 0;1 \right\} \Rightarrow tập A có hai phần tử.

  • Câu 35: Nhận biết

    Chọn phương án đúng

    Tập hợp nào sau đây có đúng một tập hợp con?

    Đáp án “\varnothing” duy nhất một tập con là \varnothing.

    Đáp án “d:y = 2k - 3” còn một tập con nữa là tập \varnothing.

    Đáp án “\left\{ \varnothing
\right\}” có hai tập con là \varnothing\left\{ \varnothing \right\}.

    Đáp án “\left\{ 1;\ \varnothing
\right\}” có ba tập con \left\{
\varnothing \right\}, \left\{ 1
\right\}\left\{ 1;\ \varnothing
\right\}.

  • Câu 36: Vận dụng

    Mệnh đề nào sau đây đúng?

    Biết A là mệnh đề sai, còn B là mệnh đề đúng. Mệnh đề nào sau đây đúng?

    B đúng, A sai nên B \Rightarrow
A, B \Leftrightarrow A là mệnh đề sai.

    \overline{A} đúng, \overline{B} sai nên \overline{A} \Rightarrow \overline{B} là mệnh đề sai do đó \overline{A}
\Leftrightarrow \overline{B} là mệnh đề sai.

    Chọn đáp án B \Rightarrow
\overline{A}.

  • Câu 37: Vận dụng

    Chọn đẳng thức đúng

    Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho AM
= \frac{AC}{4}. Gọi N là trung điểm của đoạn thẳng DC. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Giả thiết không cho góc, ta phân tích các vectơ \overrightarrow{MB},\ \overrightarrow{MN} theo các vectơ có giá vuông góc với nhau.

    \overrightarrow{MB} =
\overrightarrow{AB} - \overrightarrow{AM} = \overrightarrow{AB} -
\frac{1}{4}\overrightarrow{AC}

    = \overrightarrow{AB} -
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AD} \right) =
\frac{3}{4}\overrightarrow{AB} -
\frac{1}{4}\overrightarrow{AD}.

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} = \overrightarrow{AD} +
\overrightarrow{DN} - \frac{1}{4}\overrightarrow{AC}

    = \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{DC} - \frac{1}{4}\left( \overrightarrow{AB} +
\overrightarrow{AD} \right)

    = \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AB} - \frac{1}{4}\left( \overrightarrow{AB} +
\overrightarrow{AD} \right) = \frac{3}{4}\overrightarrow{AD} +
\frac{1}{4}\overrightarrow{AB}.

    Suy ra:

    \overrightarrow{MB}.\overrightarrow{MN}
= \left( \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AD}
\right)\left( \frac{3}{4}\overrightarrow{AD} +
\frac{1}{4}\overrightarrow{AB} \right)

    = \frac{1}{16}\left(
3\overrightarrow{AB}.\overrightarrow{AD} + 3{\overrightarrow{AB}}^{2} -
3{\overrightarrow{AD}}^{2} - \overrightarrow{AD}.\overrightarrow{AB}
\right)

    = \frac{1}{16}\left( 0 + 3a^{2} - 3a^{2}
- 0 \right) = 0.

  • Câu 38: Thông hiểu

    Tính diện tích mảnh đất

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 39: Nhận biết

    Tính giá trị cotang của góc

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 40: Nhận biết

    Tính tích vô hướng của hai vectơ

    Cho hình vuông ABCD có cạnh a. Tính \overrightarrow{AB}.\overrightarrow{AD}?

    Ta có: \overrightarrow{AB}.\overrightarrow{AD} =
a.a.cos90^{0} = 0.

  • Câu 41: Nhận biết

    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 42: Nhận biết

    Phủ định mệnh đề A

    Cho mệnh đề A: "2 là số nguyên tố". Mệnh đề phủ định của mệnh đề A

    Mệnh đề phủ định của mệnh đề A là: “2 không phải là số nguyên tố”.

  • Câu 43: Thông hiểu

    Tìm đẳng thức sai

    Đẳng thức nào sau đây là sai?

    Ta có:

    sin^{6}x - cos^{6}x

    = (sin²x)³ - (cos²x)³

    = \left( sin^{2}x - cos^{2}x
\right)\left( 1 - sin^{2}xcos^{2}x \right)

    Đáp án chưa chính xác là: sin^{6}x -
cos^{6}x = 1 - 3sin^{2}xcos^{2}x,\forall x.

  • Câu 44: Vận dụng

    Tìm M thỏa mãn điều kiện

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 45: Thông hiểu

    Tìm M để ba điểm A, B, M thẳng hàng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo