Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm khẳng định đúng

    Điều khẳng định nào sau đây là đúng?

    Mối liên hệ hai cung bù nhau.

  • Câu 2: Thông hiểu

    Chọn đáp án đúng

    Biểu thức \tan^{2}x\sin^{2}x - \tan^{2}x +\sin^{2}x có giá trị bằng

    Ta có

    \tan^{2}x\sin^{2}x - \tan^{2}x +\sin^{2}x

    = \tan^{2}x\left( \sin^{2}x - 1 \right) +\sin^{2}x

    = \frac{\sin^{2}x}{\cos^{2}x}\left( -\cos^{2}x \right) + \sin^{2}x = 0.

  • Câu 3: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 4: Thông hiểu

    Tính độ dài BC

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Chọn khẳng định sai

    Cho \Delta ABC vuông tại A, góc B bằng 30^{0}. Khẳng định nào sau đây là sai?

    Ta có:

    \widehat{A} + \widehat{B} =
90^{0}

    \Rightarrow \cos\widehat{B} = \sin\left(
90^{0} - \widehat{A} \right) = \sin\left( 90^{0} - 30^{0} \right) =
sin60^{0} = \frac{\sqrt{3}}{2}.

  • Câu 6: Thông hiểu

    Tính đường cao tam giác ABC

    Cho tam giác ABC có b = 7; c = 5, \cos A
= \frac{3}{5}. Đường cao h_{a} của tam giác ABC là

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5} = 32
\Rightarrow a = 4\sqrt{2}.

    Mặt khác: \sin^{2}A + \cos^{2}A =1

    \Rightarrow \sin^{2}A = 1 - \cos^{2}A = 1- \frac{9}{25} = \frac{16}{25}

    \Rightarrow \sin A = \frac{4}{5} (Vì \sin A > 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.\sin A= \frac{1}{2}a.h_{a}

    \Rightarrow h_{a} = \dfrac{bc\sin A}{a} =\dfrac{7.5.\dfrac{4}{5}}{4\sqrt{2}} = \dfrac{7\sqrt{2}}{2}.

  • Câu 7: Vận dụng cao

    Tính số đo góc A

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \left\{ \begin{matrix}
a = x^{2} + x + 1 \\
b = 2x + 1 \\
c = x^{2} - 1 \\
\end{matrix} ight.với x là số thực lớn hơn 1. Tính độ lớn góc \widehat{A}?

    Áp dụng định lí cosin ta có: \cos\widehat{A} = \frac{b^{2} + c^{2} -
a^{2}}{2bc}

    Ta có: \left\{ \begin{matrix}
a^{2} = x^{4} + 2x^{3} + 3x^{2} + 2x + 1 \\
b^{2} = 4x^{2} + 4x + 1 \\
c^{2} = x^{4} - 2x^{2} + 1 \\
bc = 2x^{3} + x^{2} - 2x - 1 \\
\end{matrix} ight.

    Từ đó suy ra

    b^{2} + c^{2} - a^{2} = -
bc

    \Rightarrow \cos\widehat{A} = -
\frac{1}{2}

    \Rightarrow \widehat{A} =
120^{0}

  • Câu 8: Vận dụng

    Tính chiều cao của cây

    Từ vị trí A người ta quan sát một cây cao (hình vẽ).

    Biết AH = 4m,\ HB = 20m,\ \widehat{BAC} =
45^{0}. Chiều cao của cây gần nhất với giá trị nào sau đây?

    Trong tam giác AHB, ta có:

    \tan\widehat{ABH} = \frac{AH}{BH} =
\frac{4}{20} = \frac{1}{5}

    \Rightarrow \widehat{ABH} \approx
11^{0}19'.

    Suy ra \widehat{ABC} = 90^{0} -
\widehat{ABH} = 78^{0}41'.

    Suy ra \widehat{ACB} = 180^{0} - \left(
\widehat{BAC} + \widehat{ABC} \right) = 56^{0}19'.

    Áp dụng định lý sin trong tam giác ABC, ta được

    \frac{AB}{\sin\widehat{ACB}} =
\frac{CB}{\sin\widehat{BAC}}\Rightarrow CB =\frac{AB.\sin\widehat{BAC}}{\sin\widehat{ACB}} \approx 17m.

  • Câu 9: Thông hiểu

    Chọn đáp án đúng

    Biểu thức \left( \cot a + \tan a
\right)^{2} bằng:

    Ta có:

    \left( \cot a + \tan a \right)^{2} =\cot^{2}a + 2\cot a.\tan a + \tan^{2}a

    = \left( \cot^{2}a + 1 \right) + \left(\tan^{2}a + 1 \right) = \dfrac{1}{\sin^{2}a} +\dfrac{1}{\cos^{2}a}.

  • Câu 10: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau đây, đẳng thức nào đúng?

    Giá trị lượng giác của góc đặc biệt.

  • Câu 11: Thông hiểu

    Tìm câu sai

    Khẳng định nào sau đây là sai?

    Ta có:

    \tan\alpha.\cot\alpha = \frac{\sin x}{\cos x}.\frac{\cos x}{\sin x} = 1.

  • Câu 12: Nhận biết

    Hãy chọn kết quả đúng

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 13: Nhận biết

    Tính độ dài cạnh c

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 14: Vận dụng

    Tính giá trị biểu thức

    Tính giá trị của \cos\left\lbrack \frac{\pi}{4} + (2k + 1)\pi
ightbrack.

    Ta có \cos\left\lbrack \frac{\pi}{4} +
(2k + 1)\pi ightbrack = \cos\left( \frac{5\pi}{4} + 2k\pi
ight) =
\cos\frac{5\pi}{4}

    = \cos\left( \pi + \frac{\pi}{4} ight)
= - \cos\frac{\pi}{4} = - \frac{\sqrt{2}}{2}.

  • Câu 15: Nhận biết

    Tìm đẳng thức sai

    Đẳng thức nào sau đây sai?

    Giá trị lượng giác của góc đặc biệt ta có:

    \left\{ \begin{matrix}\sin120^{0} = \dfrac{\sqrt{3}}{2} \\\cos30^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \sin120^{0} + \cos30^{0} =2.\dfrac{\sqrt{3}}{2} = \sqrt{3} \neq 0

    Vậy đẳng thức sai là: sin120^{0} +
cos30^{0} = 0.

  • Câu 16: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 17: Vận dụng cao

    Chọn khẳng định đúng

    Cho tam giác ABCAB =
c;BC = a;AC = b . Biết rằng các góc của tam giác thỏa mãn biểu thức:

    4\left( \sin\widehat{A} +3\cos\widehat{B} ight) + 3\left( \cos\widehat{A} + 3\sin\widehat{B}ight) = 20

    Chọn khẳng định đúng?

    4\left( \sin\widehat{A} +
3cos\widehat{B} ight) + 3\left( \cos\widehat{A} + 3sin\widehat{B}
ight)

    = \left( 3cos\widehat{A} +
4sin\widehat{A} ight) + \left( 9sin\widehat{B} + 12cos\widehat{B}
ight)

    \leq \sqrt{\left( 4^{2} + 3^{2}
ight)\left( sin^{2}\widehat{A} + cos^{2}\widehat{A} ight)} +
\sqrt{\left( 9^{2} + 12^{2} ight)\left( sin^{2}\widehat{B} +
cos^{2}\widehat{B} ight)}

    = 5 + 15 = 20

    Dấu bằng xảy ra khi và chỉ khi \left\lbrack \begin{matrix}\dfrac{\sin A}{\cos A} = \dfrac{3}{4} \\\dfrac{\sin B}{\cos B} = \dfrac{9}{12} \\\end{matrix} ight.\  \Rightarrow \tan A = \cot B =\dfrac{3}{4}

    \Rightarrow \tan A = \cot\left(
\frac{\pi}{2} - B ight)

    \Leftrightarrow A = \frac{\pi}{2} - B
\Rightarrow A + B = \frac{\pi}{2}

    \Rightarrow C =
\frac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại C.

  • Câu 18: Vận dụng

    Số các biểu thức mang giá trị dương là

    Cho tam giác ABC có góc A tù. Cho các biểu thức sau:

    (1) M = \sin A + \sin B + \sin
C

    (2) N = \cos A.cosB.cosC

    (3) P =
\cos\frac{A}{2}.sin\frac{B}{2}.cot\frac{C}{2}

    (4) Q = \cot A\tan B\cot C

    Số các biểu thức mang giá trị dương là:

    Ta có: A tù nên \cos A < 0;sinA > 0;tanA < 0;cotA <
0

    Do đó: M > 0;N < 0;P > 0;Q <
0.

  • Câu 19: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\cot\left( \alpha + \frac{\pi}{3} ight) =
- \sqrt{3}. Tính giá trị của biểu thức P = \sin\left( \alpha + \frac{\pi}{6} ight) +
\cos\alpha.

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{5\pi}{6} < \alpha +
\frac{\pi}{3} < \frac{7\pi}{3} \\
\cot\left( \alpha + \frac{\pi}{3} ight) = - \sqrt{3} \\
\end{matrix} ight. ightarrow
\alpha + \frac{\pi}{3} = \frac{11\pi}{6} ightarrow \alpha =
\frac{3\pi}{2}.

    Thay \alpha = \frac{3\pi}{2} vào P, ta được P = - \frac{\sqrt{3}}{2}.

  • Câu 20: Vận dụng cao

    Tính giá trị biểu thức

    Tính giá trị biểu thức P = \left\lbrack \tan\frac{17\pi}{4} + \tan\left(
\frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}.

    Ta có:

    \tan\frac{17\pi}{4} = \tan\left(
\frac{\pi}{4} + 4\pi ight) = \tan\frac{\pi}{4} = 1

    \tan\left( \frac{7\pi}{2} - x ight) =
\cot x

    \cot\frac{13\pi}{4} = \cot\left(
\frac{\pi}{4} + 3\pi ight) = \cot\frac{\pi}{4} = 1

    \cot(7\pi - x) = - \cot x

    Khi đó:

    P = \left\lbrack \tan\frac{17\pi}{4} +
\tan\left( \frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}

    P = \left( 1 + \cot x ight)^{2} +
\left( 1 - \cot x ight)^{2}

    P = 2 + 2\cot^{2}x =\dfrac{2}{\sin^{2}x}

  • Câu 21: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiêu?

    Ta có: p = \frac{5 + 12 + 13}{2} =
15.

    5^{2} + 12^{2} = 13^{2} \Rightarrow S
= \frac{1}{2}.5.12 = 30.

    Mặt khác S = p.r \Rightarrow r =
\frac{S}{p} = 2.

  • Câu 22: Thông hiểu

    Hoàn thành định lí

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 23: Thông hiểu

    Tính độ dài AC

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 26: Nhận biết

    Tính diện tích tam giác

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 27: Thông hiểu

    Tính khoảng cách AB

    Từ một đỉnh tháp chiều cao CD =
80m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26'. Ba điểm A; B; D thẳng hàng. Tính khoảng cách AB?

    Ta có: Trong tam giác vuông :

    \tan72^{0}12' =\frac{CD}{AD}\Rightarrow AD =\frac{CD}{\tan72^{0}12'} \approx 25,7

    Trong tam giác vuông :

    \tan34^{0}12' =\frac{CD}{BD}\Rightarrow BD =\frac{CD}{\tan34^{0}12'} \approx 116,7

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91(m)

  • Câu 28: Nhận biết

    Tìm câu sai

    Cho tam giác ABC. Tìm công thức sai trong các công thức dưới đây?

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 29: Thông hiểu

    Tính giá trị biểu thức T

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 30: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 31: Nhận biết

    Tính diện tích tam giác

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 33: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 34: Nhận biết

    Tìm câu sai

    Cho \alpha\beta là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?

    Mối liên hệ hai cung bù nhau.

  • Câu 35: Vận dụng

    Chọn đáp án chính xác

    Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \frac{R}{r} bằng:

    Giả sử AC = AB = a \Rightarrow BC =
a\sqrt{2}.

    Suy ra R = \frac{BC}{2} =
\frac{a\sqrt{2}}{2}.

    Ta có:

    p = \frac{AB + BC + CA}{2} =
a\left( \frac{2 + \sqrt{2}}{2} \right).

    Diện tích tam giác vuông S =
\frac{1}{2}AB.AC = \frac{a^{2}}{2}.

    Lại có S = p.r \Rightarrow r =
\frac{S}{p} = \frac{a}{2 + \sqrt{2}}

    Vậy \frac{R}{r} = 1 +
\sqrt{2}.

  • Câu 36: Nhận biết

    Xác định bất đẳng thức đúng

    Bất đẳng thức nào dưới đây là đúng?

    Câu đúng là: \cos95^{0} > \cos100^{0}.

  • Câu 37: Thông hiểu

    Tính khoảng cách AB

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm Cmà từ đó có thể nhìn được ABdưới một góc 56^{0}16'. Biết CA = 200\ m, CB = 180\ m. Khoảng cách AB bằng bao nhiêu?

    Ta có:

    AB^{2} = CA^{2} + CB^{2} -2CB.CA.\cos C

    = 200^{2} + 180^{2} -2.200.180.\cos56^{0}16' \simeq 32416

    \Rightarrow AB \simeq 180.

  • Câu 38: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 39: Nhận biết

    Chọn hệ thức đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có: sin^{2}2\alpha + cos^{2}2\alpha = 1 là công thức đúng.

  • Câu 40: Thông hiểu

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo