Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính diện tích tam giác

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 3: Nhận biết

    Tìm số đo góc A

    Cho \Delta ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Trong \Delta ABC có:

     \widehat{A} + \widehat{B} + \widehat{C} =
180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
\widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} =
65^{0}.

  • Câu 4: Nhận biết

    Chọn đẳng thức đúng

    Đẳng thức nào sau đây đúng?

    Lý thuyết “cung hơn kém 180^{0}”.

  • Câu 5: Thông hiểu

    Chọn câu đúng

    Chọn mệnh đề đúng?

    Ta có:

    \sin^{4}x - \cos^{4}x = \left( \sin^{2}x -\cos^{2}x \right)\left( \sin^{2}x + \cos^{2}x \right)

    = \left( 1 - \cos^{2}x \right) - \cos^{2}x= 1 - 2\cos^{2}x.

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABC thỏa mãn: 2\cos A = 1. Khi đó:

    Ta có:

    2\cos A = 1 \Leftrightarrow \cos A =\frac{1}{2} \Rightarrow \widehat{A} = 60^{0}.

  • Câu 7: Thông hiểu

    Chọn biểu thức tính độ dài đường trung tuyến tam giác

    Độ dài trung tuyến m_{c} ứng với cạnh c của \Delta ABC bằng biểu thức nào sau đây?

    Ta có:

    m_{c}^{2} = \frac{b^{2} +
a^{2}}{2} - \frac{c^{2}}{4}

    \Rightarrow m_{c} = \sqrt{\frac{b^{2} +
a^{2}}{2} - \frac{c^{2}}{4}} = \frac{1}{2}\sqrt{(2b^{2} + 2a^{2}) -
c^{2}}.

  • Câu 8: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 9: Nhận biết

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 10: Nhận biết

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 11: Vận dụng cao

    Tính góc giữa hai đường thẳng AM và BN

    Cho tam giác ABC có độ dài AB = c;BC = a;AC = b và các cạnh của tam giác thỏa mãn biểu thức: a^{2} + b^{2} =
5c^{2}. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.

    Gọi G là trọng tâm tam giác ABC. Ta có:

    AM^{2} = \frac{AC^{2} + AB^{2}}{2} -
\frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} ight)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác AGN ta có

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9}} - \dfrac{a^{2}}{9}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}ight)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} ight)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}

  • Câu 12: Thông hiểu

    Tính bán kính đường tròn ngoại tiếp tam giác

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 13: Thông hiểu

    Chọn mệnh đề đúng

    Gọi S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2} là tổng bình phương độ dài ba trung tuyến của tam giác ABC. Trong các mệnh đề sau mệnh đề nào đúng?

    Ta có:

    S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2}

    = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4} + \frac{a^{2} + c^{2}}{2} - \frac{b^{2}}{4} +
\frac{a^{2} + b^{2}}{2} - \frac{c^{2}}{4}

    = \frac{3}{4}\left( a^{2} + b^{2} + c^{2}
\right)

  • Câu 14: Thông hiểu

    Rút gọn biểu thức G

    Đơn giản biểu thức G = \left( 1 -\sin^{2}x \right)\cot^{2}x + 1 - \cot^{2}x:

    Ta có:

    G = \left\lbrack \left( 1 - \sin^{2}x\right) - 1 \right\rbrack \cot^{2}x + 1

    = - \sin^{2}x.\cot^{2}x + 1 = 1 - \cos^{2}x= \sin^{2}x.

  • Câu 15: Nhận biết

    Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 16: Nhận biết

    Hãy chọn kết quả đúng

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 17: Nhận biết

    Tính diện tích tam giác

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 18: Vận dụng

    Xác định mệnh đề đúng

    Cho tam giác ABC và các mệnh đề

    (I) \cos\frac{B+C}{2}=\sin\frac{A}{2}

    (II) \tan\frac{A+B}{2}\tan\frac{C}{2}=1

    (III) \cos (A +B - C)=\cos 2C

    Mệnh đề nào đúng?

    Ta có: 

    \begin{matrix}  \cos \dfrac{{B + C}}{2} = \cos \dfrac{{{{180}^0} - A}}{2} \hfill \\   = \cos \left( {{{90}^0} - \dfrac{A}{2}} ight) = \sin \dfrac{A}{2} \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \tan \dfrac{{A + B}}{2}.\tan \dfrac{C}{2} = \tan \dfrac{{{{180}^0} - C}}{2}.\tan \dfrac{C}{2} \hfill \\   = \tan \left( {{{90}^0} - \dfrac{C}{2}} ight).\tan \dfrac{C}{2} \hfill \\   = \cot \dfrac{C}{2}.\tan \dfrac{C}{2} = 1 \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \cos (A + B - C) = \cos ({180^0} - C - C) \hfill \\   = \cos ({180^0} - 2C) = \sin 2C \hfill \\ \end{matrix}

    => Mệnh đề sai

  • Câu 19: Nhận biết

    Tính giá trị của biểu thức

    Giá trị của \tan45^{0} +\cot135^{0} bằng bao nhiêu?

    Ta có: \tan45^{0} + \cot135^{0} = 1 - 1 =0

  • Câu 20: Vận dụng

    Tính giá trị biểu thức

    Cho biết \cos\alpha = -
\frac{2}{3}. Giá trị của biểu thức E = \frac{\cot\alpha - 3\tan\alpha}{2\cot\alpha -\tan\alpha} bằng bao nhiêu?

    Ta có:

    E = \frac{\cot\alpha -3\tan\alpha}{2\cot\alpha - \tan\alpha} = \frac{1 - 3\tan^{2}\alpha}{2 -\tan^{2}\alpha}

    = \dfrac{4 - 3\left( \tan^{2}\alpha + 1\right)}{3 - \left( 1 + \tan^{2}\alpha \right)} = \frac{4 -\dfrac{3}{\cos^{2}\alpha}}{3 - \dfrac{1}{\cos^{2}\alpha}}

    = \frac{4\cos^{2}\alpha -3}{3\cos^{2}\alpha - 1} = - \frac{11}{3}.

  • Câu 21: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 22: Vận dụng cao

    Tính giá trị biểu thức

    Biểu thức f(x) = 3\left(\sin^{4}x +\cos^{4}x \right) - 2\left( \sin^{6}x + \cos^{6}x \right) có giá trị bằng:

    Ta có:

    \sin^{4}x + \cos^{4}x = 1 -2\sin^{2}x\cos^{2}x.

    \sin^{6}x + \cos^{6}x = 1 -3\sin^{2}x\cos^{2}x.

    f(x) = 3\left( 1 - 2\sin^{2}x\cos^{2}x\right) - 2\left( 1 - 3\sin^{2}x\cos^{2}x \right) = 1.

  • Câu 23: Thông hiểu

    Tính độ dài cạnh c của tam giác ABC

    Cho tam giác ABC có a = 8,b =
10, góc C bằng 60^{0}. Độ dài cạnh c bằng bao nhiêu?

    Ta có:

    c^{2} = a^{2} + b^{2} -2a.b.\cos C

    = 8^{2} + 10^{2} - 2.8.10.\cos60^{0} = 84\Rightarrow c = 2\sqrt{21}.

  • Câu 24: Thông hiểu

    Tính độ dài đoạn AM

    Tam giác ABCa = 6,b = 4\sqrt{2},c = 2. M là điểm trên cạnh BC sao cho BM
= 3 . Độ dài đoạn AM bằng bao nhiêu?

    Trong tam giác ABC a = 6

    \Rightarrow BC = 6BM = 3

    Suy ra M là trung điểm BC.

    Suy ra: AM^{2} = m_{a}^{2} = \frac{b^{2}
+ c^{2}}{2} - \frac{a^{2}}{4} = 9 \Rightarrow AM = 3.

  • Câu 25: Nhận biết

    Tìm công thức đúng

    Cho tam giác ABC, chọn công thức đúng?

    Công thức đúng là:

    AB^{2} = AC^{2} +BC^{2} - 2AC.BC\cos C

  • Câu 26: Thông hiểu

    Tính giá trị biểu thức

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 27: Vận dụng

    Tính diện tích tam giác

    Tam giác ABCBC = a,\ CA = b,\ AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Diện tích tam giác ABC ban đầu là:

    S = \frac{1}{2}.AC.BC.sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là

    S_{\Delta ABC} =\frac{1}{2}.(3AC).(2BC).\sin\widehat{ACB}

    = 6.\frac{1}{2}.AC.BC.\sin\widehat{ACB} =6S

  • Câu 28: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 29: Vận dụng

    Số các biểu thức mang giá trị dương là

    Cho tam giác ABC có góc A tù. Cho các biểu thức sau:

    (1) M = \sin A + \sin B + \sin
C

    (2) N = \cos A.cosB.cosC

    (3) P =
\cos\frac{A}{2}.sin\frac{B}{2}.cot\frac{C}{2}

    (4) Q = \cot A\tan B\cot C

    Số các biểu thức mang giá trị dương là:

    Ta có: A tù nên \cos A < 0;sinA > 0;tanA < 0;cotA <
0

    Do đó: M > 0;N < 0;P > 0;Q <
0.

  • Câu 30: Vận dụng cao

    Tính diện tích tam giác ABC

    Tam giác ABC có độ dài ba trung tuyến lần lượt là 9;\ 12;\ 15. Diện tích của tam giác ABC bằng:

    Ta có:

    \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} = 81 \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} = 144 \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4} = 225\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 292 \\
b^{2} = 208 \\
c^{2} = 100
\end{matrix} \right. \Rightarrow
\left\{ \begin{matrix}
a = 2\sqrt{73} \\
b = 4\sqrt{13} \\
c = 10
\end{matrix} \right.

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{208 + 100 - 292}{2.4\sqrt{13}.10} =
\frac{1}{5\sqrt{13}}

    \sin A = \sqrt{1 - \cos^{2}A} = \sqrt{1 -\left( \frac{1}{5\sqrt{13}} \right)^{2}} =\frac{18\sqrt{13}}{65}.

    Diện tích tam giác \Delta
ABC:

    S_{\Delta ABC} = \frac{1}{2}bc\sin A =
\frac{1}{2}.4\sqrt{13}.10.\frac{18\sqrt{13}}{65} = 72

  • Câu 31: Thông hiểu

    Tính giá trị biểu thức A

    Cho \cot\alpha = \frac{1}{3}. Giá trị của biểu thức A = \frac{3\sin\alpha +4\cos\alpha}{2\sin\alpha - 5\cos\alpha} là:

    Ta có:

    A = \frac{3\sin\alpha +4sin\alpha.\cot\alpha}{2sin\alpha - 5\sin\alpha.\cot\alpha} = \frac{3 +4\cot\alpha}{2 - 5\cot\alpha} = 13.

  • Câu 32: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có:

    S = \frac{1}{2}bc\sin A =
\frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C.

  • Câu 33: Nhận biết

    Tính số đo góc A

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 34: Nhận biết

    Chọn đẳng thức đúng

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có hệ thức đúng là: sin^{2}\alpha + cos^{2}\alpha = 1.

  • Câu 36: Thông hiểu

    Tính giá trị của biểu thức

    Giá trị của A = \tan5^{{^\circ}}.\tan10^{{^\circ}}.\tan15^{{^\circ}}...\tan80^{{^\circ}}.\tan85^{{^\circ}} là

    Ta có:

    A = \tan5^{0}.\tan10^{0}.\tan15^{0}...\tan80^{0}.\tan85^{0}

    A = \left( \tan 5^{0}.\tan85^{0}\right).\left( \tan10^{0}.\tan80^{0} \right)...\left( \tan40^{0}\tan50^{0}\right).\tan45^{0}

    A = \left( \tan 5^{0}.\cot5^{0}\right).\left( \tan10^{0}.\cot10^{0} \right)...\left( \tan40^{0}\cot40^{0}\right).\tan45^{0} = 1.

  • Câu 37: Nhận biết

    Chọn đẳng thức chưa chính xác

    Đẳng thức nào sau đây là sai?

    Ta có: sin^{2}\alpha + cos^{2}\alpha =
1 nên đẳng thức chưa chính xác là: sin^{2}2x + cos^{2}2x = 1.

  • Câu 38: Vận dụng

    Tính bán kính đường tròn ngoại tiếp tam giác

    Tam giác ABC vuông tại A có đường cao AH = \frac{12}{5}cm\frac{AB}{AC} = \frac{3}{4}. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

    Tam giác ABC vuông tại A, có đường cao AH \Rightarrow AB.AC = AH^{2}\ \ \ \ \ \
(*).

    Mặt khác \frac{AB}{AC} = \frac{3}{4}
\Leftrightarrow AB = \frac{3}{4}AC thế vào (*), ta được

    \frac{3}{4}AC^{2} = \left( \frac{12}{5}
\right)^{2} \Leftrightarrow AC = \frac{8\sqrt{3}}{5}.

    Suy ra AB =\frac{3}{4}.\frac{8\sqrt{3}}{5} = \frac{6\sqrt{3}}{5}\Rightarrow BC =\sqrt{AB^{2} + AC^{2}} = 2\sqrt{3}.

    Vậy bán kính cần tìm là R = \frac{BC}{2}
= \sqrt{3}\ \ cm.

  • Câu 39: Nhận biết

    Tìm đẳng thức sai

    Trong các đẳng thức sau đây, đẳng thức nào sai?

    Vi \sin60^{0} + \cos60^{0} =\frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2} \neq1 suy ra đẳng thức sai là: \sin60^{0} + \cos60^{0} = 1.

  • Câu 40: Thông hiểu

    Tính độ dài cạnh BC

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo