Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính độ dài cạnh AC

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 2: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Giá trị lượng giác của góc đặc biệt ta có: 

    \left\{ \begin{matrix}cos60^{0} = \frac{1}{2} \\ \sin120^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \cos60^{0} \neq \sin120^{0}

  • Câu 3: Thông hiểu

    Tính độ dài đường cao

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 4: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 5: Nhận biết

    Tính độ dài cạnh còn lại của tam giác

    Tam giác ABCa = 8,c = 3,\widehat{B} = 60^{0}. Độ dài cạnh b bằng bao nhiêu?

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 3^{2} - 2.8.3.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 6: Nhận biết

    Xác định hệ thức sai

    Hai góc nhọn \alpha\beta phụ nhau, hệ thức nào sau đây là sai?

    Ta có:

    \cos\alpha = \cos\left( 90^{0} - \beta
\right) = \sin\beta

    Vậy hệ thức sai là: \cos\alpha = -
\sin\beta.

  • Câu 7: Vận dụng

    Tính giá trị biểu thức P

    Cho góc α, (0^0 ≤ α ≤ 180^0) với \tanα = ‒3. Giá trị của bằng P=\frac{6\sinα -7\cosα }{7\sinα +6\cosα } bao nhiêu?

    Ta có:

    \begin{matrix}  P = \dfrac{{6\sin \alpha  - 7\cos \alpha }}{{7\sin \alpha  + 6\cos \alpha }} \hfill \\   \Rightarrow P = \dfrac{{\dfrac{{6\sin \alpha  - 7\cos \alpha }}{{\cos \alpha }}}}{{\dfrac{{7\sin \alpha  + 6\cos \alpha }}{{\cos \alpha }}}} \hfill \\   \Rightarrow P = \dfrac{{6\tan \alpha  - 7}}{{7\tan \alpha  + 6}} = \dfrac{{6.\left( { - 3} ight) - 7}}{{7.\left( { - 3} ight) + 6}} = \dfrac{5}{3} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Tìm bán kính đường tròn ngoại tiếp tam giác

    Một tam giác có ba cạnh là 52,56,60. Bán kính đường tròn ngoại tiếp là:

    Ta có:

    p = \frac{a + b + c}{2} = \frac{52
+ 56 + 60}{2} = 84.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)}

    = \sqrt{84(84 - 52)(84 - 56)(84 - 60)} =
1344.

    S = \frac{abc}{4R} \Rightarrow R =
\frac{abc}{4S} = \frac{52.56.60}{4.1344} = \frac{65}{2}.

  • Câu 9: Nhận biết

    Tinh độ dài cạnh b

    Cho \Delta ABCB = 60^{0},a = 8,c = 5. Độ dài cạnh b bằng:

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    = 8^{2} + 5^{2} - 2.8.5.\cos60^{0} = 49\Rightarrow b = 7.

  • Câu 10: Nhận biết

    Hãy chọn kết quả đúng

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 11: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho \pi <
\alpha < \frac{3\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có : \pi < \alpha <
\frac{3\pi}{2} ightarrow 0 < \frac{3\pi}{2} - \alpha <
\frac{\pi}{2}\overset{}{ightarrow} \left\{ \begin{matrix}
\sin\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\cos\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\end{matrix} ight. \overset{}{ightarrow}\tan\left( \frac{3\pi}{2} -
\alpha ight) > 0.

  • Câu 12: Vận dụng cao

    Câu 12: Chọn đáp án đúng

    Từ hai vị trí AB của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30^{0}, phương nhìn BC tạo với phương nằm ngang góc 15^{0}30'.

    Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

    Từ giả thiết, ta suy ra tam giác ABC\widehat{CAB} = 60^{0},\ \ \widehat{ABC} =
105^{0}30'c =
70.

    Khi đó \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0}

    \Leftrightarrow \widehat{C} = 180^{0} -
\left( \widehat{A} + \widehat{B} \right) = 180^{0} - 165^{0}30' =
14^{0}30'.

    Theo định lí sin, ta có \frac{b}{\sin B}
= \frac{c}{\sin C} hay \frac{b}{sin105^{0}30'} =
\frac{70}{sin14^{0}30'}

    Do đó AC = b =
\frac{70.sin105^{0}30'}{sin14^{0}30'} \approx 269,4\
m

    Gọi CH là khoảng cách từ C đến mặt đất.

    Tam giác vuông ACH có cạnh CH đối diện với góc 30^{0} nên CH
= \frac{AC}{2} = \frac{269,4}{2} = 134,7\ \ m.

    Vậy ngọn núi cao khoảng 135\
m.

  • Câu 13: Nhận biết

    Tính diện tích tam giác

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 14: Thông hiểu

    Tìm khẳng định sai

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 15: Vận dụng

    Tính diện tích tam giác

    Tam giác ABCBC = a,\ CA = b,\ AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Diện tích tam giác ABC ban đầu là:

    S = \frac{1}{2}.AC.BC.sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là

    S_{\Delta ABC} =\frac{1}{2}.(3AC).(2BC).\sin\widehat{ACB}

    = 6.\frac{1}{2}.AC.BC.\sin\widehat{ACB} =6S

  • Câu 16: Thông hiểu

    Tính giá trị của biểu thức

    Giá trị của A = \tan5^{{^\circ}}.\tan10^{{^\circ}}.\tan15^{{^\circ}}...\tan80^{{^\circ}}.\tan85^{{^\circ}} là

    Ta có:

    A = \tan5^{0}.\tan10^{0}.\tan15^{0}...\tan80^{0}.\tan85^{0}

    A = \left( \tan 5^{0}.\tan85^{0}\right).\left( \tan10^{0}.\tan80^{0} \right)...\left( \tan40^{0}\tan50^{0}\right).\tan45^{0}

    A = \left( \tan 5^{0}.\cot5^{0}\right).\left( \tan10^{0}.\cot10^{0} \right)...\left( \tan40^{0}\cot40^{0}\right).\tan45^{0} = 1.

  • Câu 17: Thông hiểu

    Tính diện tích mảnh đất

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 18: Nhận biết

    Chọn phương án đúng

    Giá trị của \tan30^{0} +\cot30^{0} bằng bao nhiêu?

    Ta có: \tan30^{0} + \cot30^{0} =\frac{\sqrt{3}}{3} + \sqrt{3} = \frac{4\sqrt{3}}{3}.

  • Câu 19: Nhận biết

    Tính độ dài cạnh a

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 20: Nhận biết

    Chọn khẳng định đúng

    Cho góc \alpha tù. Điều khẳng định nào sau đây là đúng?

    Học sinh ghi nhớ bảng xét dấu giá trị lượng giác dưới đây:

    Vì góc \alpha tù nên \alpha > 90^{0}nên \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0
\end{matrix} \right.\  \Rightarrow \cot\alpha < 0.

  • Câu 21: Thông hiểu

    Tính giá trị biểu thức

    Biểu thức: f(x) = \cos^{4}x +\cos^{2}x.\sin^{2}x + \sin^{2}x có giá trị bằng:

    Ta có:

    f(x) = \cos^{2}x\left( \cos^{2}x + \sin^{2}x\right) + \sin^{2}x = \cos^{2}x + \sin^{2}x = 1.

  • Câu 22: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 23: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 24: Nhận biết

    Tính giá trị của biểu thức

    Giá trị của \tan45^{0} +\cot135^{0} bằng bao nhiêu?

    Ta có: \tan45^{0} + \cot135^{0} = 1 - 1 =0

  • Câu 25: Nhận biết

    Tính số đo góc B

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 26: Nhận biết

    Tính độ dài cạnh AB

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 27: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \cot\alpha = \frac{1}{3}. Tính P = \frac{3sin\alpha + 4cos\alpha}{2sin\alpha -
5cos\alpha}.

    Chia cả tử và mẫu của P cho \sin\alpha ta được P = \frac{3 + 4cot\alpha}{2 - 5cot\alpha} =
\frac{3 + 4.\frac{1}{3}}{2 - 5.\frac{1}{3}} = 13.

  • Câu 28: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị m

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 29: Thông hiểu

    Chọn kết luận đúng

    Chọn đáp án sai: Một tam giác giải được nếu biết:

    Ta có: Một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2).

  • Câu 30: Thông hiểu

    Tính độ dài BC

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Xác định câu sai

    Tìm khẳng định sai trong các khẳng định sau:

    Đáp án sai là: cos75^{0} >
cos50^{0}.

  • Câu 32: Nhận biết

    Xác định bất đẳng thức đúng

    Bất đẳng thức nào dưới đây là đúng?

    Câu đúng là: \cos95^{0} > \cos100^{0}.

  • Câu 33: Nhận biết

    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 34: Thông hiểu

    Tính giá trị biểu thức A

    Cho \cot\alpha = \frac{1}{3}. Giá trị của biểu thức A = \frac{3\sin\alpha +4\cos\alpha}{2\sin\alpha - 5\cos\alpha} là:

    Ta có:

    A = \frac{3\sin\alpha +4sin\alpha.\cot\alpha}{2sin\alpha - 5\sin\alpha.\cot\alpha} = \frac{3 +4\cot\alpha}{2 - 5\cot\alpha} = 13.

  • Câu 35: Thông hiểu

    Chọn đáp án đúng

    Cho \tan\alpha + \cot\alpha = m. Tìm m để \tan^{2}\alpha + \cot^{2}\alpha = 7.

    Ta có:

    7 = \tan^{2}\alpha + \cot^{2}\alpha =\left( \tan\alpha + \cot\alpha \right)^{2} - 2

    \Rightarrow m^{2} = 9 \Leftrightarrow m =
\pm 3.

  • Câu 36: Thông hiểu

    Tính bán kính đường tròn ngoại tiếp tamgiác

    Tam giác với ba cạnh là 5;12;13 có bán kính đường tròn ngoại tiếp là?

    Ta có: 5^{2} + 12^{2} = 13^{2}
\Rightarrow R = \frac{13}{2}. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 37: Nhận biết

    Tính độ dài bán kính đường tròn nội tiếp

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 38: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin(\pi + \alpha) = - \frac{1}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \tan\left( \frac{7\pi}{2} - \alpha
ight).

    Ta có P = \tan\left( \frac{7\pi}{2} -
\alpha ight) = \tan\left( 3\pi + \frac{\pi}{2} - \alpha
ight) = \tan\left( \frac{\pi}{2}
- \alpha ight) = \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}.

    Theo giả thiết: \sin(\pi + \alpha) = -
\frac{1}{3} \Leftrightarrow -
\sin\alpha = - \frac{1}{3} \Leftrightarrow \sin\alpha =
\frac{1}{3}.

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{2\sqrt{2}}{3} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{2\sqrt{2}}{3}\overset{}{ightarrow}P = - 2\sqrt{2}.

  • Câu 39: Vận dụng

    Chọn đáp án chính xác

    Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \frac{R}{r} bằng:

    Giả sử AC = AB = a \Rightarrow BC =
a\sqrt{2}.

    Suy ra R = \frac{BC}{2} =
\frac{a\sqrt{2}}{2}.

    Ta có:

    p = \frac{AB + BC + CA}{2} =
a\left( \frac{2 + \sqrt{2}}{2} \right).

    Diện tích tam giác vuông S =
\frac{1}{2}AB.AC = \frac{a^{2}}{2}.

    Lại có S = p.r \Rightarrow r =
\frac{S}{p} = \frac{a}{2 + \sqrt{2}}

    Vậy \frac{R}{r} = 1 +
\sqrt{2}.

  • Câu 40: Vận dụng cao

    Tính giá trị biểu thức

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo