Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa học kì 2 Toán 10 Chân trời sáng tạo (Đề 1)

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Cùng nhau ôn tập, thử sức với đề kiểm tra giữa học kì 2 Toán 10 - Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Xác định phương trình tổng quát của đường thẳng

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 2: Thông hiểu

    Tính giá trị của x

    Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng 5\sqrt{5} là:

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  = \left( {x - 6;10} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {AB} } ight| = \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  \hfill \\  \left| {\overrightarrow {AB} } ight| = 5\sqrt 5  \hfill \\   \Leftrightarrow \sqrt {{{\left( {x - 6} ight)}^2} + {{10}^2}}  = 5\sqrt 5  \hfill \\   \Leftrightarrow {x^2} - 12x + 136 = 125 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 11} \\   {x = 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Nghiệm của phương trình thuộc khoảng nào?

    Phương trình \sqrt[3]{\frac{2x}{x + 1}} + \sqrt[3]{\frac{1}{2} +\frac{1}{2x}} = 2 có nghiệm thuộc khoảng:

    Đặt t = \sqrt[3]{\frac{2x}{x +1}}. Phương trình đã cho trở thành: t+ \frac{1}{t} = 2 \Leftrightarrow t = 1

    Ta được \sqrt[3]{\frac{2x}{x + 1}} = 1\Leftrightarrow x = 1 thuộc [1 ; 2).

  • Câu 4: Vận dụng cao

    Tính giá trị nhỏ nhất của biểu thức

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A( - 1;5),B(5;3) và đường thẳng (\Delta):3x + 4y - 12 = 0. Lấy một điểm H bất kì trên đường thẳng (\Delta). Khi đó biểu thức \left| \overrightarrow{HA} + \overrightarrow{HB}ight| đạt giá trị nhỏ nhất bằng:

    Gọi I là trung điểm của AB khi đó I(2; 4)

    Ta có:

    \left| \overrightarrow{HA} +\overrightarrow{HB} ight| = \left| \overrightarrow{HI} +\overrightarrow{IA} + \overrightarrow{HI} + \overrightarrow{IB}ight|

    = \left| 2\overrightarrow{HI} + \left(\overrightarrow{IA} + \overrightarrow{IB} ight) ight| =2HI

    Nên \left| \overrightarrow{HA} +\overrightarrow{HB} ight|_{\min} khi HI_{\min}khi và chỉ khi H là hình chiếu vuông góc của I lên đường thẳng (\Delta)

    Khi đó: HI = d(I;\Delta) = \frac{|3.2 +4.4 - 12|}{\sqrt{3^{3} + 4^{2}}} = 2

    Vậy biểu thức \left| \overrightarrow{HA}+ \overrightarrow{HB} ight| đạt giá trị nhỏ nhất bằng 2.

  • Câu 5: Vận dụng

    Tìm tọa độ điểm M

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(–4;0),B(–5;0)C(3;0). Tìm điểm M thuộc trục hoành sao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}.

    M \in Ox \Rightarrow
M(a;0).

    Ta có: \overrightarrow{MA} = ( - 4 -
a;0); \overrightarrow{MB} = ( - 5 -
a;0) ;\overrightarrow{MC} = (3 -
a;0).

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow - 3a - 6 = 0 \Leftrightarrow
a = - 2 \Rightarrow M( - 2;0).

  • Câu 6: Thông hiểu

    Tìm m để hai đường thẳng vuông góc

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):2x - 3y - 10 = 0\left( d_{2} ight):\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.. Tìm giá trị của tham số m để hai đường thẳng vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 3) \\
\overrightarrow{u_{2}} = ( - 3; - 4m) \Rightarrow \overrightarrow{n_{2}}
= (4m, - 3) \\
\end{matrix} ight.

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow 2(4m) - 3.( - 3) = 0

    \Leftrightarrow m =
\frac{9}{8}

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = \frac{9}{8}.

  • Câu 7: Thông hiểu

    Tính độ lớn tổng hai vecto

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 8: Nhận biết

    Số nghiệm của phương trình là

    Số nghiệm của phương trình x - \sqrt{3x + 4} = 2 là:

    x - \sqrt{3x + 4} = 2 \Leftrightarrow\sqrt{3x + 4} = x - 2\Leftrightarrow \left\{ \begin{matrix}x - 2 \geq 0 \\3x + 4 = (x - 2)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\3x + 4 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} - 7x = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\\left\lbrack \begin{matrix}x = 0 \\x = 7 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 7.

    Vậy phương trình có 1 nghiệm.

  • Câu 9: Thông hiểu

    Tìm m để bất phương trình nghiệm đúng với mọi x

    Cho tam thức f(x) = ax^{2} + bx + c (a ≠ 0), có ∆ = b^{2}  – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta ' \leqslant 0} \end{array}} ight.

  • Câu 10: Vận dụng

    Chọn khẳng định đúng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ điểm P( - 2;1) và hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0. Một đường tròn (C) có tâm I(a;b) thuộc đường thẳng \left( d_{1} ight), đi qua điểm P và tiếp xúc với \left( d_{2} ight). Kết luận nào sau đây đúng?

    Ta có:

    I(a;b) \in \left( d_{1} ight)
\Rightarrow I( - 3b - 8;b)

    Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng \left( d_{2} ight) nên

    IP = d(I;\Delta')

    \Leftrightarrow \sqrt{( - 2 + 3b +
8)^{2} + (1 - b)^{2}} = \frac{\left| 3( - 3b - 8) - 4b + 10
ight|}{\sqrt{3^{2} + ( - 4)^{2}}}

    \Leftrightarrow 25\left( 10b^{2} + 34b +
37 ight) = | - 13b - 14|^{2}

    \Leftrightarrow (9b + 27)^{2} = 0
\Leftrightarrow b = - 3 \Rightarrow a = 1

    \Rightarrow a - b = 4

    Vậy khẳng định đúng là: a - b =
4.

  • Câu 11: Nhận biết

    Tính khoảng cách từ một điểm đến đường thẳng

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 12: Thông hiểu

    Hệ thức nào sau đây là sai?

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 13: Nhận biết

    Chọn công thức đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 14: Vận dụng cao

    Tìm số nghiệm nguyên dương của phương trình

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

  • Câu 15: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm S của bất phương trình x^{2} + x - 12 < 0 là:

     Ta có: x^{2} + x - 12 < 0  \Leftrightarrow -4< x <3.

    Suy ra S = (-4;3).

  • Câu 16: Thông hiểu

    Tìm khoảng đồng biến nghịch biến

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 17: Nhận biết

    Tổng các nghiệm của phương tình bằng

    Tổng các nghiệm của phương trình \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x} bằng:

    \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x}\Leftrightarrow \left\{ \begin{matrix}2 - x \geq 0 \\x^{2} + 2x + 4 = 2 - x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight..

    Vậy, tổng các nghiệm của phương trình là ( - 1) + ( - 2) = - 3.

  • Câu 18: Nhận biết

    Tìm khẳng định đúng

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 19: Nhận biết

    Chọn kết luận đúng

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 20: Nhận biết

    Tìm tọa độ trung điểm

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 21: Vận dụng

    Tìm m để hai đường thẳng cắt nhau

    Tìm m để hai đường thẳng d_{1}:2x - 3y + 4 =
0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. cắt nhau.

    \left\{ \begin{matrix}
d_{1}:2x - 3y + 4 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (2; - 3) \\
{\overrightarrow{n}}_{2} = (4m; - 3) \\
\end{matrix} ight. \overset{d_{1} \cap d_{2} =
M}{ightarrow}\frac{4m}{2}\boxed{=}\frac{- 3}{- 3} \Leftrightarrow
m\boxed{=}\frac{1}{2}.

  • Câu 22: Nhận biết

    Tìm tọa độ đỉnh parabol

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 24: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 25: Vận dụng

    Tìm 3 điểm thẳng hàng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

  • Câu 26: Vận dụng

    Tìm điều kiện của m sao cho

    Tìm tất cả các giá trị của tham số m sao cho tam thức bậc hai f(x)=(m-1)x^{2}+(3m-2)x+3-2m đổi dấu hai lần trên \mathbb{R}?

    Để biểu thức trên là tam thức bậc hai thì m eq 1.

    Để tam thức bậc hai đổi dấu 2 lần trên \mathbb{R} thì \Delta >0.

    Ta có: (3m-2)^2-4 (m-1)(3-2m)>0 \Leftrightarrow17m^2-32m+16>0. Suy ra m \in \mathbb{R}.

    Kết hợp điều kiện ở trên, suy ra m eq 1.

     

  • Câu 27: Thông hiểu

    Tìm phương trình tổng quát của AB

    Trong mặt phẳng Oxy cho điểm M(1;2). Gọi A,B là hình chiếu của M lên Ox,Oy. Phương trình tổng quát của đường thẳng AB là:

    Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra A(1;0),B(0;2)

    Khi đó phương trình đường thẳng AB là: \frac{x}{1} + \frac{y}{2} = 1 \Leftrightarrow 2x +
y - 2 = 0.

    Vậy phương trình tổng quát của AB là: 2x + y - 2 = 0.

  • Câu 28: Vận dụng

    Khẳng định nào sau đây đúng?

    Trong hệ tọa độ Oxy, cho A( -
1;5),\ B(5;5),\ C( - 1;11). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (6;0) \\
\overrightarrow{AC} = (0;6) \\
\end{matrix} ight.\ \overset{}{ightarrow}6.6 eq
0.0\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{AC} không cùng phương.

  • Câu 29: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 30: Thông hiểu

    Viết phương trình tổng quát của đường thẳng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 31: Nhận biết

    Tìm tọa độ vecto

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 32: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].

  • Câu 33: Thông hiểu

    Tích vô hướng của hai vecto

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 34: Thông hiểu

    Xác định hàm số bậc hai

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 35: Vận dụng cao

    Tìm tọa độ điểm M thõa mãn điều kiện

    Trong hệ tọa độ Oxy, cho ba điểm A(1;0),\ B(0;3)C( - 3; - 5). Tìm điểm M thuộc trục hoành sao cho biểu thức P = \left| 2\overrightarrow{MA} -
3\overrightarrow{MB} + 2\overrightarrow{MC} ight| đạt giá trị nhỏ nhất.

    Ta có

    2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} =2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) - 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 2\left(\overrightarrow{MI} + \overrightarrow{IC} ight),\ \forall I

    = \overrightarrow{MI} + 2\left(
\overrightarrow{IA} - 3\overrightarrow{IB} + 2\overrightarrow{IC}
ight),\ \forall I.

    Chọn điểm I sao cho 2\overrightarrow{IA} - 3\overrightarrow{IB} +
2\overrightarrow{IC} = \overrightarrow{0}. (*)

    Gọi I(x;y), từ (*) ta có

    \left\{ \begin{matrix}2(1 - x) - 3(0 - x) + 2( - 3 - x) = 0 \\2(0 - y) - 3(2 - y) + 2( - 5 - y) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = - 4 \\y = - 16 \\\end{matrix} ight.\  ight.\  \Rightarrow I( - 4; - 16).

    Khi đó P = \left| 2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} ight|= \left|\overrightarrow{MI} ight| = MI.

    Để P nhỏ nhất \Leftrightarrow MI nhỏ nhất. Mà M thuộc trục hoành nên MI nhỏ nhất khi M là hình chiếu vuông góc của I lên trục hoành \overset{}{ightarrow}M( - 4;0).

  • Câu 36: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 37: Thông hiểu

    Tìm tập nghiệm của phương trình

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 38: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 39: Thông hiểu

    Tính góc giữa hai đường thẳng

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 40: Nhận biết

    Tính tích vô hướng

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Chân trời sáng tạo (Đề 1) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo