Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Tập hợp

Trắc nghiệm Toán 10: Tập hợp được Vndoc trình bày dưới dạng bài tập trực tuyến nên các em học sinh có thể trực tiếp vào làm bài và kiểm tra kết quả ngay khi làm xong. Nhằm giúp học sinh lớp 10 củng cố và rèn luyện kỹ năng tính toán, khả năng tư duy với các dạng bài tập mới nhất. 

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Kí hiệu các tập hợp số

    Người ta thường kí hiệu tập hợp số như thế nào?

    Hướng dẫn:

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 2: Nhận biết
    Tìm khẳng định đúng

    Khẳng định nào đúng trong các khẳng định sau:

    Hướng dẫn:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 3: Nhận biết
    Cách viết tập hợp nào đúng

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Hướng dẫn:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 4: Thông hiểu
    Tập hợp nào không phải là tập hợp con của tập A

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Hướng dẫn:

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 5: Thông hiểu
    Biểu diễn tập hợp

    Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]

    Hướng dẫn:

    Ta có:

    Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.

    Biểu diễn tập [‒5; 5] trên trục số đúng là:

    Biểu diễn tập hợp

  • Câu 6: Thông hiểu
    Hai tập hợp bằng nhau

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Hướng dẫn:

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 7: Thông hiểu
    Chọn khẳng định đúng

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

    Hướng dẫn:

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 8: Thông hiểu
    Tìm các tập hợp con có hai phần tử

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Hướng dẫn:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 9: Thông hiểu
    Liệt kê số tập con của tập hợp A

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Hướng dẫn:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 10: Thông hiểu
    Xác định các tập hợp bằng nhau

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    Hướng dẫn:
    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Chân trời sáng tạo

Xem thêm