Chọn phương án thích hợp
Kí hiệu
là tập hợp các cầu thủ
trong đội tuyển bóng rổ,
là mệnh đề chứa biến “
cao trên
”. Mệnh đề
khẳng định rằng:
Mệnh đề khẳng định rằng : "Mọi cầu thủ trong đội tuyển bóng rổ đều cao trên
.".
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!
Chọn phương án thích hợp
Kí hiệu
là tập hợp các cầu thủ
trong đội tuyển bóng rổ,
là mệnh đề chứa biến “
cao trên
”. Mệnh đề
khẳng định rằng:
Mệnh đề khẳng định rằng : "Mọi cầu thủ trong đội tuyển bóng rổ đều cao trên
.".
Tính giá trị của P
Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng
. Tính tích P = ab.
Vì (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng nên ta có hệ
(thỏa mãn a > 1) hoặc
(loại).
Suy ra P = ab = 16.12 = 192.
Tìm bất phương trình bậc nhất hai ẩn
Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Xét đáp án
là bất phương trình bậc nhất 3 ẩn
, không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
là bất phương trình bậc nhất hai ẩn có dạng
,
.
Xét đáp án
là bất phương trình có chứa
nên không là bất phương trình bậc nhất hai ẩn.
Xét đáp án
không là bất phương trình bậc nhất hai ẩn vì không có dạng
.
Tìm D để ABDC là hình bình hành
Cho tam giác
với
. Tìm
để
là hình bình hành?
Ta có: là hình bình hành
.
Khẳng định nào sau đây đúng?
Cho tam giác ABC. Lấy điểm
trên BC sao cho
. Khẳng định nào sau đây đúng?
Ta có:
nên
.
Tìm nghiệm của phương trình
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ra được: thỏa mãn điều kiện
Vậy phương trình có nghiệm
Tìm x thỏa mãn điều kiện
Cho số thực
. Tìm
để
.
Để thì giá trị của số thực
phải thỏa bất phương trình
.
Ta có (do
)
.
So điều kiện , suy ra
.
Tính bán kính của đường tròn
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Xác định hai vectơ cùng phương
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây là cùng phương?
Ta có
.
Hai vectơ và
là cùng phương.
Chọn đáp án đúng
Cho bốn điểm
phân biệt. Khi đó vectơ
là:
Ta có:
.
Tìm m thỏa mãn điều kiện
Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.
Phương trình hoành độ giao điểm của (P) với d là x3 − 6x2 + 9x = mx
Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0
.
Xác định tập hợp điểm thỏa mãn yêu cầu
Cho hai điểm
cố định và
Tập hợp các điểm
thỏa mãn
là:
Gọi là trung điểm của đoạn thẳng
Ta có:
Theo giả thiết, ta có
Tìm hàm số bậc hai thỏa mãn
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Tìm tọa độ của vectơ thỏa mãn
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Tìm nghiệm của hệ bất phương trình
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Tìm tập xác định
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Chọn phương án đúng
Để đo khoảng cách từ một điểm
trên bờ sông đến gốc cây
trên cù lao giữa sông, người ta chọn một điểm
cùng ở trên bờ với
sao cho từ
và
có thể nhìn thấy điểm
. Ta đo được khoảng cách
,
và
.Vậy sau khi đo đạc và tính toán được khoảng cách
gần nhất với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Vì nên
Tìm tọa độ trung điểm BC
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là:
Chọn khẳng định đúng
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Tìm khẳng định đúng
Cho hai tập hợp
. Khẳng định nào sau đây đúng?
Ta có .
Tìm tập xác định
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Chọn khẳng định đúng
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Chọn kết quả đúng
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Tìm m để phương trình có nghiệm duy nhất
Cho
. Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Chọn khẳng định đúng
Chọn khẳng định đúng:
Khẳng định đúng là: “Nếu là trọng tâm tam giác
thì
.”
Tính độ dài vectơ
Cho tam giác
vuông tại
có
. Tính độ dài
.

Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Chọn khẳng định đúng
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Giải phương trình
Tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm phương trình là:
Tìm tam thức bậc hai thỏa mãn
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6

Tìm giá trị lớn nhất của biểu thức F
Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện
là
Biểu diễn miền nghiệm của hệ :
Nghiệm của hệ là miền đa giác
với
.
Giá trị lớn nhất đạt được tại 1 trong 5 đỉnh của đa giác.
Với .
Với.
Với .
Với .
Với .
Vậy GTLN .
Tìm điểm không thuộc miền nghiệm của hệ
Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình
?
Thay tọa độ (0;0) vào hệ ta được
không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.
Chọn hệ thức đúng
Cho tam giác
và một điểm
tùy ý. Hãy chọn hệ thức đúng:
Ta có:
Tìm bảng biến thiên của tam thức bậc hai
Cho tam thức bậc hai
có đồ thị như hình vẽ dưới đây

Bảng biến thiên của tam thức bậc hai là
Từ đồ thị ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3
=> f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án


Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án

Vậy bảng biến thiên đúng là

Tìm m để bất phương trình vô nghiệm
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Tìm trục đối xứng
Parabol y = − x2 + 2x + 3 có phương trình trục đối xứng là
Parabol y = − x2 + 2x + 3 có trục đối xứng là đường thẳng ⇔ x = 1.
Hãy chọn kết quả đúng
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tính giá trị lượng giác
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Tìm điều kiện của a và b
Cho đường thẳng
và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Chọn kết luận đúng
Cho ba điểm
phân biệt. Khi đó:
Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Tính độ dài cạnh b
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Có bao nhiêu vectơ thỏa mãn
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Chọn kết luận đúng
Chọn đáp án sai: Một tam giác giải được nếu biết:
Ta có: Một tam giác giải được khi ta biết yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá
).
Viết mệnh đề sau bằng cách sử dụng kí hiệu
Viết mệnh đề sau bằng cách sử dụng kí hiệu
hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Tính số đo góc B
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
. Tính độ lớn góc
?
Ta có:
Tính số đo góc C
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: