Tam thức bậc hai không âm khi nào
Tam thức bậc hai
nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!
Tam thức bậc hai không âm khi nào
Tam thức bậc hai
nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Xác định hệ bất phương trình bậc nhất hai ẩn
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Các hệ bất phương trình ;
có chứa các bất phương trình bậc hai
=> Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.
Đáp án là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.
Đáp án có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.
Chọn đáp án thích hợp
Trong mặt phẳng
, cho các điểm
. Tọa độ điểm
thỏa mãn
là
Ta có:
.
Chọn khẳng định đúng
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Tìm giá trị lớn nhất của biểu thức P
Cho x, y thỏa mãn hệ
. Tìm giá trị lớn nhất của biểu thức P(x;y) = 40000x+30000y
Biểu diễn miền nghiệm của hệ :

Nghiệm của hệ là miền tứ giác với
và tọa độ
là nghiệm của hệ
, suy ra
.
Giá trị lớn nhất của đạt được tại 1 trong 4 đỉnh của tứ giác.
Với .
Với .
Với .
Với .
Vậy GTLN .
Tìm tập xác định
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Chọn kết quả đúng
Cho hai tập hợp
. Tìm
.
Tập hợp và tập hợp
có chung các phần tử
.
Do đó .
Tính độ dài vectơ
Cho tam giác
, kẻ đường cao
và
. Gọi
là trung điểm của
,
là điểm thỏa mãn
và
. Khi đó độ dài vectơ
bằng bao nhiêu?
Hình vẽ minh họa

Gọi E là điểm đối xứng của B qua A, ta có:
Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác
Suy ra K là giao điểm của a và đường tròn tâm A bán kính .
Điểm K cần tìm là N hoặc P
Ta có: .
Tìm tọa độ điểm
Cho hàm số
. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Xác định mệnh đề đúng
Cho
là hai tập hợp khác rỗng. Mệnh đề nào sau đây đúng?
Biểu đồ Ven:

Ta có
Tìm hệ bất phương trình thỏa mãn đề bài
Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0
=> Các hệ phương trình ;
không thỏa mãn.
Thay tọa độ điểm vào biểu thức
ta thấy:
Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là:
Xác định tọa độ điểm C thuộc Ox theo yêu cầu
Trên mặt phẳng tọa độ
, cho
,
. Điểm
thuộc tia
sao cho tam giác
vuông tại
có tọa độ là
Ta có : .
Khi đó : ;
.
Tam giác vuông tại
.
Vậy hoặc
.
Tìm giá trị lớn nhất
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Chọn đáp án đúng
Cho hai điểm
và
. Vec tơ đối của vectơ
có tọa độ là:
Ta có vectơ đối của là
.
Tìm hàm số bậc hai thỏa mãn
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Tính giá trị biểu thức A
Cho
. Giá trị của biểu thức
là:
Ta có:
.
Xác định vị trí điểm M
Cho tam giác
có
thỏa mãn điều kiện
. Xác định vị trí điểm ![]()
Gọi là trọng tâm tam giác
.
Ta có : .
Tìm điểm thỏa mãn
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Xác định bất phương trình bậc nhất hai ẩn
Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
Ta có: là bất phương trình bậc nhất hai ẩn.
Tìm hàm số bậc hai thỏa mãn
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Tính giá trị biểu thức
Giá trị của
bằng bao nhiêu?
Ta có: .
Tính bán kính đường tròn ngoại tiếp tam giác
Cho
có
. Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Tìm nghiệm của phương trình
Nghiệm của phương trình
là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Chọn đáp án đúng
Tam giác với ba cạnh là
có bán kính đường tròn ngoại tiếp bằng bao nhiêu?
Ta có: (Tam giác vuông bán kính đường tròn ngoại tiếp bằng
cạnh huyền).
Tính diện tích tam giác ABC
Tam giác
có độ dài ba trung tuyến lần lượt là
. Diện tích của tam giác
bằng:
Ta có:
Ta có:
Diện tích tam giác
Khẳng định nào sau đây sai?
Cho tam giác
có
là trọng tâm và
là trung điểm
Khẳng định nào sau đây sai?
Vì là trung điểm của
suy ra
Ta có
Tìm điều kiện để hai vectơ cùng phương
Cho
. Hai vectơ
cùng phương nếu
Ta có: cùng phương
.
Chọn khẳng định đúng
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Tìm m thỏa mãn điều kiện
Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.
Ta thấy 2x2 − 3x + 2 > 0, ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.
Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)
Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất .
Tìm mệnh đề đảo đúng
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng?
Câu đúng là: “Nếu số nguyên có chữ số tận cùng là
thì số nguyên
chia hết cho 5”.
Tính độ dài cạnh BC.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Tìm tập nghiệm của phương trình
Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Tìm nghiệm của hệ bất phương trình
Cặp số nào sau đây là nghiệm của hệ bất phương trình
?
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Xét đáp án ta có:
thay vào hệ bất phương trình ta được:
Vậy không là nghiệm của hệ bất phương trình.
Chọn đáp án đúng
Cho tam giác
có
,
,
. Tính
?
Ta có:
.
Tìm khẳng định sai
Cho
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Ta có:
cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
•
• là trung điểm
.
Tính độ dài cạnh c của tam giác ABC
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
bằng bao nhiêu?
Ta có:
.
Mệnh đề nào sau đây đúng?
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Khẳng định nào sau đây sai?
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Tính khoảng cách AB
Từ một đỉnh tháp chiều cao
, người ta nhìn hai điểm
và
trên mặt đất dưới các góc nhìn là
và
so với phương nằm ngang. Ba điểm
thẳng hàng. Tính khoảng cách
(chính xác đến hàng đơn vị)?
Ta có: Trong tam giác vuông :
Trong tam giác vuông :
Suy ra: khoảng cách
Tìm m thỏa mãn điều kiện
Tìm các giá trị của m để biểu thức sau luôn dương
![]()
Tam thức − 4x2 + 5x − 2 có a = − 4 < 0, Δ = − 7 < 0
suy ra − 4x2 + 5x − 2 < 0 ∀x
Do đó h(x) luôn dương khi và chỉ khi h′(x) = − x2 + 4(m+1)x + 1 − 4m2 luôn âm
Vậy với thì biểu thức h(x) luôn dương.
Chọn mệnh đề đúng
Trong các câu sau, câu nào là mệnh đề đúng?
Mệnh đề đúng là: “ là số lẻ”.
Tìm vectơ thỏa mãn
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Tìm cặp số thỏa mãn
Cho tam giác
, điểm I thoả mãn:
. Nếu
thì cặp số
bằng:
Ta có:
.
Tìm m để
Tìm m để phương trình
có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên

Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Tính tổng tọa độ vectơ
Cho 6 điểm
. Tổng vectơ:
bằng:
Ta có:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: