Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tam thức bậc hai không âm khi nào

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 2: Nhận biết

    Xác định hệ bất phương trình bậc nhất hai ẩn

    Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

    Các hệ bất phương trình \left\{\begin{matrix}x^{2}+y<0\\ y-x>0\end{matrix}ight.\left\{\begin{matrix}2x-y^{2}<5\\ 4x+3y>10^{10}\end{matrix}ight. có chứa các bất phương trình bậc hai {x^2} + y < 0;2x - {y^2} < 5 => Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.

    Đáp án y - 2x <0 là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.

    Đáp án \left\{\begin{matrix}x<1\\ y-1>2\end{matrix}ight. có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.

  • Câu 3: Thông hiểu

    Chọn đáp án thích hợp

    Trong mặt phẳng Oxy, cho các điểm A(1;3),B(4;0),C(2; -
5). Tọa độ điểm Mthỏa mãn\overrightarrow{MA} + \overrightarrow{MB}
- 3\overrightarrow{MC} = \overrightarrow{0}

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} - 3\overrightarrow{MC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
\left( 1 - x_{M} \right) + \left( 4 - x_{M} \right) - 3\left( 2 - x_{M}
\right) = 0 \\
\left( 3 - y_{M} \right) + \left( 0 - y_{M} \right) - 3\left( - 5 -
y_{M} \right) = 0
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{M} = 1 \\
y_{M} = - 18
\end{matrix} \right..

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 5: Vận dụng

    Tìm giá trị lớn nhất của biểu thức P

    Cho x, y thỏa mãn hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.. Tìm giá trị lớn nhất của biểu thức P(x;y) = 40000x+30000y

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.:

    Nghiệm của hệ là miền tứ giác OABC với O(0;0); A(40;0);C(0;50) và tọa độ B là nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\end{matrix}ight., suy ra B(20;40).

    Giá trị lớn nhất của P =40000x+30000y đạt được tại 1 trong 4 đỉnh của tứ giác.

    Với O(0;0) \Rightarrow P=0.

    Với A(40;0) \Rightarrow P=1600000.

    Với B(20;40)\Rightarrow P=2000000.

    Với C(0;50) \Rightarrow P=1500000.

    Vậy GTLN P=2000000.

  • Câu 6: Nhận biết

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 7: Nhận biết

    Chọn kết quả đúng

    Cho hai tập hợp A = \left\{ a;\ \ b;\ \
c;\ \ d;\ \ m \right\},\ \ B = \left\{ c;\ \ d;\ \ m;\ \ k;\ \ l
\right\}. Tìm A \cap
B.

    Tập hợp A và tập hợp B có chung các phần tử c,\ \ d,\ \ m.

    Do đó A \cap B = \left\{ c;\ \ d;\ \ m
\right\}.

  • Câu 8: Vận dụng cao

    Tính độ dài vectơ

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 9: Thông hiểu

    Tìm tọa độ điểm

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 10: Thông hiểu

    Xác định mệnh đề đúng

    Cho M,\ N là hai tập hợp khác rỗng. Mệnh đề nào sau đây đúng?

    Biểu đồ Ven:

    Ta có x \in (M\backslash N)
\Leftrightarrow \left\{ \begin{matrix}
x \in M \\
x \notin N \\
\end{matrix} \right.\ .

  • Câu 11: Thông hiểu

    Tìm hệ bất phương trình thỏa mãn đề bài

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 12: Thông hiểu

    Xác định tọa độ điểm C thuộc Ox theo yêu cầu

    Trên mặt phẳng tọa độ Oxy, cho A(2;3), B( - 2;1). Điểm C thuộc tia Ox sao cho tam giác ABC vuông tại C có tọa độ là

    Ta có : C \in Ox \Rightarrow C(x;\
0).

    Khi đó : \overrightarrow{AC} = (x -
2;\  - 3); \overrightarrow{BC} = (x
+ 2;\  - 1).

    Tam giác ABC vuông tại C \Rightarrow
\overrightarrow{AC}\bot\overrightarrow{BC}

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow x^{2} - 4 +
3 = 0 \Leftrightarrow x = \pm 1.

    Vậy C( - 1;0) hoặc C(1;0).

  • Câu 13: Vận dụng cao

    Tìm giá trị lớn nhất

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Cho hai điểm A(1;0)B(0; - 2). Vec tơ đối của vectơ \overrightarrow{AB} có tọa độ là:

    Ta có vectơ đối của \overrightarrow{AB}\overrightarrow{BA} = (0 - 1; - 2 - 0) = ( - 1; -
2).

  • Câu 15: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 16: Thông hiểu

    Tính giá trị biểu thức A

    Cho \cot\alpha = \frac{1}{3}. Giá trị của biểu thức A = \frac{3\sin\alpha +4\cos\alpha}{2\sin\alpha - 5\cos\alpha} là:

    Ta có:

    A = \frac{3\sin\alpha +4sin\alpha.\cot\alpha}{2sin\alpha - 5\sin\alpha.\cot\alpha} = \frac{3 +4\cot\alpha}{2 - 5\cot\alpha} = 13.

  • Câu 17: Nhận biết

    Xác định vị trí điểm M

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác \Delta ABC.

    Ta có : \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 18: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 19: Nhận biết

    Xác định bất phương trình bậc nhất hai ẩn

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 20: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 21: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 22: Nhận biết

    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho \Delta ABCS = 84,a = 13,b = 14,c = 15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có:

    S_{\Delta ABC} =
\frac{a.b.c}{4R}

    \Leftrightarrow R = \frac{a.b.c}{4S} =
\frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 23: Thông hiểu

    Tìm nghiệm của phương trình

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Tam giác với ba cạnh là 6;8;10 có bán kính đường tròn ngoại tiếp bằng bao nhiêu?

    Ta có: 6^{2} + 8^{2} = 10^{2} \Rightarrow
R = \frac{10}{2} = 5. (Tam giác vuông bán kính đường tròn ngoại tiếp bằng \frac{1}{2} cạnh huyền).

  • Câu 25: Vận dụng cao

    Tính diện tích tam giác ABC

    Tam giác ABC có độ dài ba trung tuyến lần lượt là 9;\ 12;\ 15. Diện tích của tam giác ABC bằng:

    Ta có:

    \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} = 81 \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} = 144 \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4} = 225\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 292 \\
b^{2} = 208 \\
c^{2} = 100
\end{matrix} \right. \Rightarrow
\left\{ \begin{matrix}
a = 2\sqrt{73} \\
b = 4\sqrt{13} \\
c = 10
\end{matrix} \right.

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{208 + 100 - 292}{2.4\sqrt{13}.10} =
\frac{1}{5\sqrt{13}}

    \sin A = \sqrt{1 - \cos^{2}A} = \sqrt{1 -\left( \frac{1}{5\sqrt{13}} \right)^{2}} =\frac{18\sqrt{13}}{65}.

    Diện tích tam giác \Delta
ABC:

    S_{\Delta ABC} = \frac{1}{2}bc\sin A =
\frac{1}{2}.4\sqrt{13}.10.\frac{18\sqrt{13}}{65} = 72

  • Câu 26: Thông hiểu

    Khẳng định nào sau đây sai?

    Cho tam giác ABCG là trọng tâm và M là trung điểm BC. Khẳng định nào sau đây sai?

    M là trung điểm của BC suy ra \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}. Ta có \left\{
\begin{matrix}
\overrightarrow{GB} = \overrightarrow{GM} + \overrightarrow{MB} \\
\overrightarrow{GC} = \overrightarrow{GM} + \overrightarrow{MC} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{MB} +
\overrightarrow{MC}}{︸}} + 2\ \overrightarrow{GM} = 2\
\overrightarrow{GM}.

  • Câu 27: Thông hiểu

    Tìm điều kiện để hai vectơ cùng phương

    Cho \overrightarrow{a} =
(2016\sqrt{2015};0),\ \overrightarrow{b} = (4;x). Hai vectơ \overrightarrow{a},\overrightarrow{b} cùng phương nếu

    Ta có: \overrightarrow{a},\overrightarrow{b} cùng phương \Leftrightarrow
\overrightarrow{a} = k.\overrightarrow{b} \Rightarrow x =
0.

  • Câu 28: Nhận biết

    Chọn khẳng định đúng

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 29: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.

    Ta thấy 2x2 − 3x + 2 > 0,  ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.

    Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)

    Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất \Leftrightarrow \Delta = 0 \Leftrightarrow 25 -
16(2 - 5m) = 0 \Leftrightarrow m = \frac{7}{80}.

  • Câu 30: Thông hiểu

    Tìm mệnh đề đảo đúng

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng?

    Câu đúng là: “Nếu số nguyên n có chữ số tận cùng là 0 thì số nguyên n chia hết cho 5”.

  • Câu 31: Thông hiểu

    Tính độ dài cạnh BC.

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 32: Nhận biết

    Tìm tập nghiệm của phương trình

    Đâu là tập nghiệm của phương trình \sqrt{x^{2} - 2x} = \sqrt{2x -
x^{2}}?

    \sqrt{x^{2} - 2x} = \sqrt{2x - x^{2}}\Leftrightarrow \left\{ \begin{matrix}x^{2} - 2x \geq 0 \\x^{2} - 2x = 2x - x^{2} \\\end{matrix} ight.\  \Leftrightarrow x^{2} - 2x = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x = 2 \\\end{matrix} ight..

    Vậy tập nghiệm của phương trình là S =
\left\{ 0;2 ight\}.

  • Câu 33: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 34: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABCA(1;2), B( -
1;1), C(5; - 1). Tính \overrightarrow{AB}.\overrightarrow{AC}?

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} =
( - 2).4 + ( - 1).( - 3) = - 5.

  • Câu 35: Thông hiểu

    Tìm khẳng định sai

    Cho \Delta ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có:

    \Delta ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC\overset{}{\rightarrow}\left|
\overrightarrow{AB} \right| = \left| \overrightarrow{AC}
\right|

    H là trung điểm BC\overset{}{\rightarrow}\left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC}
\end{matrix} \right..

  • Câu 36: Thông hiểu

    Tính độ dài cạnh c của tam giác ABC

    Cho tam giác ABC có a = 8,b =
10, góc C bằng 60^{0}. Độ dài cạnh c bằng bao nhiêu?

    Ta có:

    c^{2} = a^{2} + b^{2} -2a.b.\cos C

    = 8^{2} + 10^{2} - 2.8.10.\cos60^{0} = 84\Rightarrow c = 2\sqrt{21}.

  • Câu 37: Nhận biết

    Mệnh đề nào sau đây đúng?

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 38: Nhận biết

    Khẳng định nào sau đây sai?

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 39: Vận dụng

    Tính khoảng cách AB

    Từ một đỉnh tháp chiều cao CD = 80\ m, người ta nhìn hai điểm AB trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26' so với phương nằm ngang. Ba điểm A,B,D thẳng hàng. Tính khoảng cách AB (chính xác đến hàng đơn vị)?

    Ta có: Trong tam giác vuông CDA: tan72^{0}12' = \frac{CD}{AD} \Rightarrow AD = \frac{CD}{tan72^{0}12'}
= \frac{80}{tan72^{0}12'} \simeq 25,7.

    Trong tam giác vuông CDB: tan34^{0}26' = \frac{CD}{BD} \Rightarrow BD =
\frac{CD}{tan34^{0}26'} =
\frac{80}{tan34^{0}26'} \simeq 116,7.

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91\ m.

  • Câu 40: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm các giá trị của m để biểu thức sau luôn dương

    h(x) = \frac{- x^{2} + 4(m + 1)x + 1 -
4m^{2}}{- 4x^{2} + 5x - 2}

    Tam thức  − 4x2 + 5x − 2a =  − 4 < 0,  Δ =  − 7 < 0

    suy ra  − 4x2 + 5x − 2 < 0  ∀x

    Do đó h(x) luôn dương khi và chỉ khi h′(x) =  − x2 + 4(m+1)x + 1 − 4m2 luôn âm

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 < 0 \\
\Delta' = 4(m + 1)^{2} + \left( 1 - 4m^{2} ight) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 8m + 5 < 0 \Leftrightarrow m
< - \frac{5}{8}

    Vậy với m < - \frac{5}{8} thì biểu thức h(x) luôn dương.

  • Câu 41: Nhận biết

    Chọn mệnh đề đúng

    Trong các câu sau, câu nào là mệnh đề đúng?

    Mệnh đề đúng là: “5 là số lẻ”.

  • Câu 42: Vận dụng

    Tìm vectơ thỏa mãn

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2;3)\overrightarrow{b} = (4;1). Tìm vectơ \overrightarrow{d} biết \overrightarrow{a}.\overrightarrow{d} = 4\overrightarrow{b}.\overrightarrow{d} = -
2.

    Gọi \overrightarrow{d} = (x;y).

    Ta có: \overrightarrow{d}.\overrightarrow{a}
= 4 \Leftrightarrow - 2x + 3y = 4\overrightarrow{b}.\overrightarrow{d} = - 2
\Leftrightarrow 4x + y = - 2

    Giải hệ phương trình: \left\{
\begin{matrix}
- 2x + 3y = 4 \\
4x + y = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{5}{7} \\
y = \frac{6}{7} \\
\end{matrix} ight. nên \overrightarrow d=\left(\mathbf{-}\frac{5}{7};\frac{6}{7}ight).

  • Câu 43: Vận dụng

    Tìm cặp số thỏa mãn

    Cho tam giác ABC, điểm I thoả mãn: 5\overrightarrow{MA} =
2\overrightarrow{MB}. Nếu \overrightarrow{IA} = m\overrightarrow{IM} +
n\overrightarrow{IB} thì cặp số (m;n) bằng:

    Ta có:

    5\overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow 5\left( \overrightarrow{MI} +\overrightarrow{IA} ight) = 2\left( \overrightarrow{MI} +\overrightarrow{IB} ight)\Leftrightarrow 5\overrightarrow{IA} =3\overrightarrow{IM} + 2\overrightarrow{IB} \Leftrightarrow\overrightarrow{IA} = \frac{3}{5}\overrightarrow{IM} +\frac{2}{5}\overrightarrow{IB}.

  • Câu 44: Vận dụng cao

    Tìm m để

    Tìm m để phương trình \sqrt{x^{2} + mx + 2} = 2x + 1 có hai nghiệm phân biệt là:

    Phương trình \Leftrightarrow \left\{
\begin{matrix}
x \geq - \frac{1}{2} \\
3x^{2} + (4 - m)x - 1 = 0(*) \\
\end{matrix} ight..

    Phương trình đã cho có hai nghiệm  ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng - \frac{1}{2} \Leftrightarrow đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt.

    Xét hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; +
\infty). Ta có - \frac{b}{2a} =
\frac{m - 4}{6}

    + TH1: Nếu \frac{m - 4}{6} \leq -
\frac{1}{2} \Leftrightarrow m \leq 1 thì hàm số đồng biến trên \lbrack - \frac{1}{2}; + \infty) nên m ≤ 1 không thỏa mãn yêu cầu bài toán.

    + TH2: Nếu \frac{m - 4}{6} > -
\frac{1}{2} \Leftrightarrow m > 1 :

    Ta có bảng biến thiên

    Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt \Leftrightarrow y{(-\frac12)}\geq0>y{(\frac{m-4}6)}

    \Leftrightarrow\frac{2m-9}4\geq0>\frac1{12}{(-m^2+8m-28)\;}(1)

     − m2 + 8m − 28 =  − (m−4)2 − 12 < 0,  ∀m nên

    (1) \Leftrightarrow 2m - 9 \geq 0
\Leftrightarrow m \geq \frac{9}{2} (thỏa mãn m > 1).

    Vậy m \geq \frac{9}{2} là giá trị cần tìm.

  • Câu 45: Thông hiểu

    Tính tổng tọa độ vectơ

    Cho 6 điểm A,B,C,D,E,F. Tổng vectơ: \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF} bằng:

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF}

    = \left( \overrightarrow{AD} +
\overrightarrow{DB} \right) + \left( \overrightarrow{CF} +
\overrightarrow{FD} \right) + \left( \overrightarrow{EB} +
\overrightarrow{BF} \right)

    = \overrightarrow{AD} +
\overrightarrow{CF} + \overrightarrow{EB}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo