Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm số các giá trị nguyên của m

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 2: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 3: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (m2−4)x2 + (m−2)x + 1 < 0 vô nghiệm.

    • Xét m2 − 4 = 0 ⇔ m =  ± 2

    Với m =  − 2, bất phương trình trở thành x > \frac{1}{4}: không thỏa mãn.

    Với m = 2, bất phương trình trở thành 1 < 0: vô nghiệm. Do đó m = 2 thỏa mãn.

    • Xét m ≠  ± 2. Yêu cầu bài toán

     ⇔ (m2−4)x2 + (m−2)x + 1 ≥ 0,  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 4 > 0 \\
\Delta = (m - 2)^{2} - 4\left( m^{2} - 4 ight) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - \frac{10}{3} \\
m > 2 \\
\end{matrix} ight.

    Kết hợp hai trường hợp, ta được m \leq -
\frac{10}{3} hoặc m ≥ 2.

  • Câu 4: Vận dụng

    Tính chiều cao tòa nhà

    Trên nóc một tòa nhà có một cột ăng-ten cao 5\ m . Từ vị trí quan sát A cao 7\
m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50^{0}40^{0} so với phương nằm ngang.

    Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

    Từ hình vẽ, suy ra \widehat{BAC} =
10^{0}

    \widehat{ABD} = 180^{0} - \left(
\widehat{BAD} + \widehat{ADB} \right) = 180^{0} - \left( 50^{0} + 90^{0}
\right) = 40^{0}.

    Áp dụng định lí sin trong tam giác ABC, ta có

    \frac{BC}{\sin\widehat{BAC}} =
\frac{AC}{\sin\widehat{ABC}}

    \Rightarrow AC =\frac{BC.\sin\widehat{ABC}}{\sin\widehat{BAC}} =\frac{5.\sin40^{0}}{\sin10^{0}} \approx 18,5 m.

    Trong tam giác vuông ADC, ta có \sin\widehat{CAD} =
\frac{CD}{AC}

    \Rightarrow CD = AC.\sin\widehat{CAD} =11,9\ m.

    Vậy CH = CD + DH = 11,9 + 7 = 18,9\
m.

  • Câu 5: Thông hiểu

    Tìm m để ba điểm thẳng hàng

    Trong mặt phẳng Oxy, cho A(m - 1; - 1),\ B(2;2 - 2m),\ C(m + 3;3). Tìm giá trị m để A,B,C là ba điểm thẳng hàng?

    Ta có: \overrightarrow{AB} = (3 - m;3 -
2m), \overrightarrow{AC} =
(4;4)

    Ba điểm A,B,C thẳng hàng khi và chỉ khi \overrightarrow{AB} cùng phương với \overrightarrow{AC}

    \Leftrightarrow \frac{3 - m}{4} = \frac{3
- 2m}{4} \Leftrightarrow m = 0.

  • Câu 6: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình |f(x)| − 1 = m có đúng 2 nghiệm phân biệt.

    + Phương trình  ⇔ |f(x)| = m + 1.

    + Đồ thị hàm số y = |f(x)| có dạng:

    + Dựa vào đồ thị, để phương trình |f(x)| = m + 1 có hai nghiệm phân biệt thì:

    \left\lbrack \begin{matrix}
m + 1 > 1 \\
m + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 0 \\
m = - 1 \\
\end{matrix} ight..

  • Câu 7: Vận dụng

    Tính độ lớn của vectơ

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}. Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Ta có \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ \cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{21}.

  • Câu 8: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình bình hành ABCD, gọi O là giao điểm hai đường chéo AC BD.

    a) \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}. Đúng||Sai

    b) \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}. Sai||Đúng

    c) Đặt \overrightarrow{a} =
\overrightarrow{DA}, \overrightarrow{b} = \overrightarrow{DC}. Khi đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} - \sqrt{3}
\right), biết rằng vectơ \overrightarrow{a}\overrightarrow{b} tạo với nhau góc 60{^\circ}\left| \overrightarrow{a} \right| = 6;\left|
\overrightarrow{b} \right| = 3. Sai||Đúng

    d) Tập hợp điểm Msao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0}; điểm M đó thỏa mãn \left| \overrightarrow{DM}
\right| = \left| 2\overrightarrow{DB} \right|. Đúng||Sai

    Đáp án là:

    Cho hình bình hành ABCD, gọi O là giao điểm hai đường chéo AC BD.

    a) \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}. Đúng||Sai

    b) \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}. Sai||Đúng

    c) Đặt \overrightarrow{a} =
\overrightarrow{DA}, \overrightarrow{b} = \overrightarrow{DC}. Khi đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} - \sqrt{3}
\right), biết rằng vectơ \overrightarrow{a}\overrightarrow{b} tạo với nhau góc 60{^\circ}\left| \overrightarrow{a} \right| = 6;\left|
\overrightarrow{b} \right| = 3. Sai||Đúng

    d) Tập hợp điểm Msao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0}; điểm M đó thỏa mãn \left| \overrightarrow{DM}
\right| = \left| 2\overrightarrow{DB} \right|. Đúng||Sai

    a) Đũng

    Theo quy tắc hiệu ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}.

    b) Sai

    Theo quy tắc hiệu ta có \overrightarrow{OB} - \overrightarrow{OC} =
\overrightarrow{OD} - \overrightarrow{OA} \Leftrightarrow
\overrightarrow{CB} = \overrightarrow{AD}.

    Đẳng thức này sai vì \overrightarrow{CB}\overrightarrow{AD} là hai véc tơ đối nhau.

    c) Sai

    Ta có: AC^{2} = DA^{2} + DC^{2} -
2.DA.DC.cos60{^\circ} = 6^{2} + 3^{2} - 2.6.3.\frac{1}{2} =
27.

    DO^{2} = \frac{AD^{2} + DC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{6^{2} + 3^{2}}{2} - \frac{27}{4} =
\frac{63}{4}.

    \left| \overrightarrow{a} +
\overrightarrow{b} \right| = \left| \overrightarrow{DA} +
\overrightarrow{DC} \right| = \left| \overrightarrow{DB} \right| = 2DO =
2\sqrt{\frac{63}{4}} = 3\sqrt{7}.

    \left| \overrightarrow{a} -
\overrightarrow{b} \right| = \left| \overrightarrow{DA} -
\overrightarrow{DC} \right| = \left| \overrightarrow{CA} \right| = CA =
3\sqrt{3}.

    Do đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} + \sqrt{3}
\right).

    d) Đúng

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{DA} +
\overrightarrow{DB} + \overrightarrow{DC} + \overrightarrow{DM} =
\overrightarrow{0}

    \overrightarrow{DA} +
\overrightarrow{DC} = \overrightarrow{DB}

    Vậy (1) \Leftrightarrow
2\overrightarrow{DB} + \overrightarrow{DM} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{DM} = -
2\overrightarrow{DB} \Rightarrow \left| \overrightarrow{DM} \right| =
\left| 2\overrightarrow{DB} \right|

  • Câu 9: Thông hiểu

    Chọn khẳng định sai

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 10: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 11: Nhận biết

    Tìm điểm thuộc miền nghiệm hệ bất phương trình

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 12: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng?

    Ta có: \overrightarrow{u} = (2; - 1) = -( - 2;1) = - \overrightarrow{v}\ \ \ \ \  \Rightarrow \ \\overrightarrow{u}\overrightarrow{v} đối nhau.

  • Câu 13: Nhận biết

    Tìm đẳng thức sai

    Cho hình bình hành ABCD. Đẳng thức nào sau đây sai.

    Ta có: \left| \overrightarrow{AC} \right|
= \left| \overrightarrow{BD} \right| sai do ABCD là hình bình hành.

  • Câu 14: Thông hiểu

    Tìm số nghiệm của phương trình

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 15: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 16: Thông hiểu

    Xác định số vectơ thỏa mãn yêu cầu

    Cho hai điểm phân biệt A,B. Số vectơ (khác \overrightarrow{0}) có điểm đầu và điểm cuối lấy từ các điểm A,B là:

    Số vectơ (khác \overrightarrow{0}) là \overrightarrow{AB}; \overrightarrow{BA} .

    Vậy đáp án cần tìm là 2.

  • Câu 17: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình chữ nhật ABCD,AB = 4a,AD =
3a. Gọi M là trung điểm của AB,G là trọng tâm tam giác ACM (Hình vẽ).

    a) \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{BA} - 3\overrightarrow{BC}. Sai||Đúng

    b) \overrightarrow{BG} =
\frac{3}{2}\overrightarrow{BA} +
\frac{1}{3}\overrightarrow{BC}. Sai||Đúng

    c) \overrightarrow{BC}.\overrightarrow{BA} =
0. Đúng||Sai

    b) \overrightarrow{BG}.\overrightarrow{CM} = -
a^{2}. Sai||Đúng

    Đáp án là:

    Cho hình chữ nhật ABCD,AB = 4a,AD =
3a. Gọi M là trung điểm của AB,G là trọng tâm tam giác ACM (Hình vẽ).

    a) \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{BA} - 3\overrightarrow{BC}. Sai||Đúng

    b) \overrightarrow{BG} =
\frac{3}{2}\overrightarrow{BA} +
\frac{1}{3}\overrightarrow{BC}. Sai||Đúng

    c) \overrightarrow{BC}.\overrightarrow{BA} =
0. Đúng||Sai

    b) \overrightarrow{BG}.\overrightarrow{CM} = -
a^{2}. Sai||Đúng

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

    Ta có: \overrightarrow{CM} =
\overrightarrow{BM} - \overrightarrow{BC} =
\frac{1}{2}\overrightarrow{BA} - \overrightarrow{BC}.

    G là trọng tâm của tam giác ACM nên

    3\overrightarrow{BG} =\overrightarrow{BA} +\overrightarrow{BM} +\overrightarrow{BC}

    = \overrightarrow{BA} +
\frac{1}{2}\overrightarrow{BA} + \overrightarrow{BC} =
\frac{3}{2}\overrightarrow{BA} + \overrightarrow{BC}

    \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC}

    ABCD là hình chữ nhật nên BC = AD = 3a,\overrightarrow{BC} \cdot
\overrightarrow{BA} = 0.

    Ta có: \overrightarrow{BG} \cdot
\overrightarrow{CM} = \left( \frac{1}{2}\overrightarrow{BA} +
\frac{1}{3}\overrightarrow{BC} \right) \cdot \left(
\frac{1}{2}\overrightarrow{BA} - \overrightarrow{BC}
\right)

    = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}

    = \frac{1}{4}(4a)^{2} - \frac{1}{3}
\cdot 4a \cdot 3a - \frac{1}{3}(3a)^{2} = - 3a^{2}.

  • Câu 18: Nhận biết

    Tính số đo góc A

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 19: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 20: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 21: Vận dụng cao

    Điền đáp án vào ô trống

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Đáp án là:

    Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.

    Diện tích trồng hoa là: 6 (ha)

    Diện tích trông rau là: 4 (ha)

    Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: x,y (ha)

    Điều kiện: x,y \geq 0

    Số tiền cần bỏ ra để thuê người trồng hoa là 30y.100000 = 3000000y (trồng).

    Lợi nhuận thu được là

    f(x;y) = 1000000x + 12000000 -
3000000y

    \Rightarrow f(x;y) = 10000000x +
9000000y (đồng).

    Vì số công trồng rau không vượt quá 80 nên 20x
\leq 80 \Leftrightarrow x \leq 4

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 10 \\
0 \leq x \leq 4 \\
y \geq 0 \\
\end{matrix} ight.\ (*)

    Ta cần tìm giá trị lớn nhất của f(x;y) trên miền nghiệm của hệ (*).

    Miền nghiệm của hệ (*) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là toạ độ của một trong các đỉnh O(0;0),A(4;0),B(4;6),C(0;10).

    => f(x;y) lớn nhất khi (x;y) = (4;6)

    Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất

  • Câu 22: Nhận biết

    Tìm tọa độ trung điểm

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 23: Vận dụng cao

    Tam giác ABC là tam giác gì

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 24: Thông hiểu

    Tính độ dài vectơ

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tổng hai vectơ \overrightarrow{GB} + \overrightarrow{GC} có độ dài bằng bao nhiêu?

    Dựng hình bình hành GBDC. Gọi M là trung điểm BC.

    Khi đó ta có

    \left| \overrightarrow{GB} +
\overrightarrow{GC} \right| = \left| \overrightarrow{GD} \right| = GD =
2GM

    = \frac{2}{3}AM = \frac{1}{3}BC =
\frac{1}{3}.12 = 4

  • Câu 25: Nhận biết

    Số nghiệm của phương trình là

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x}. là bao nhiêu?

    Xét phương trình: 3x + \sqrt{x - 8} =
\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}
x - 8 \geq 0 \\
4 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 8 \\
x \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow x \in \varnothing..

    Vậy phương trình vô nghiệm.

  • Câu 26: Thông hiểu

    Chọn đáp án đúng

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 27: Thông hiểu

    Đẳng thức nào sau đây sai?

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB}= \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC}

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 28: Thông hiểu

    Tổng quát hóa mệnh đề phủ định

    Mệnh đề nào sau đây phủ định mệnh đề P: ‘’ tích 3 số tự nhiên liên tiếp chia hết cho 6’’

    Mệnh đề P: ‘’ tích 3 số tự nhiên liên tiếp chia hết cho 6’’.

    \Leftrightarrow P:''\forall n \in
N,n(n + 1)(n + 2) \vdots 6''.

    Mệnh đề phủ định là \overline{P}:"\exists n \in
N,n(n + 1)(n + 2)⋮̸ 6".

  • Câu 29: Nhận biết

    Tìm mệnh đề sai

    Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?

    Dựa vào đáp án, ta có nhận xét sau:

    Xác định được góc \left(
\overrightarrow{AB},\overrightarrow{AC} \right) là góc \widehat{A} nên \left( \overrightarrow{AB},\overrightarrow{AC}
\right) = 60^{0}

    Do đó \overrightarrow{AB}.\overrightarrow{AC} =AB.AC.\cos\left( \overrightarrow{AB},\overrightarrow{AC} \right) =a.a.\cos60^{0} = \frac{a^{2}}{2} suy ra \overrightarrow{AB}.\overrightarrow{AC} =
\frac{1}{2}a^{2} đúng.

    Xác định được góc \left(
\overrightarrow{AC},\overrightarrow{CB} \right) là góc ngoài của góc \widehat{C} nên \left( \overrightarrow{AC},\overrightarrow{CB}
\right) = 120^{0}

    Do đó \overrightarrow{AC}.\overrightarrow{CB} =AC.CB.\cos\left( \overrightarrow{AC},\overrightarrow{CB} \right) =a.a.\cos120^{0} = - \frac{a^{2}}{2} suy ra \overrightarrow{AC}.\overrightarrow{CB} = -
\frac{1}{2}a^{2} đúng.

    Xác định được góc \left(
\overrightarrow{GA},\overrightarrow{GB} \right) là góc \widehat{AGB} nên \left( \overrightarrow{GA},\overrightarrow{GB}
\right) = 120^{0}

    Do đó \overrightarrow{GA}.\overrightarrow{GB} =GA.GB.\cos\left( \overrightarrow{GA},\overrightarrow{GB} \right) =\frac{a}{\sqrt{3}}.\frac{a}{\sqrt{3}}.\cos120^{0} = -\frac{a^{2}}{6} suy ra \overrightarrow{GA}.\overrightarrow{GB} =
\frac{a^{2}}{6} sai.

    Xác định được góc \left(
\overrightarrow{AB},\overrightarrow{AG} \right) là góc \widehat{GAB} nên \left( \overrightarrow{AB},\overrightarrow{AG}
\right) = 30^{0}

    Do đó \overrightarrow{AB}.\overrightarrow{AG} =AB.AG.\cos\left( \overrightarrow{AB},\overrightarrow{AG} \right) =a.\frac{a}{\sqrt{3}}.\cos30^{0} = \frac{a^{2}}{2} suy ra\overrightarrow{AB}.\overrightarrow{AG} =
\frac{1}{2}a^{2} đúng.

  • Câu 30: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 31: Nhận biết

    Chọn khẳng định đúng

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 32: Vận dụng cao

    Tìm m để phương trình có nghiệm

    Các giá trị của tham số m để phương trình (2x - 1)^{2} + m = \sqrt{x^{2} - x +
1} (1) có nghiệm là:

    Đặt t = \sqrt{x^{2} - x + 1}

     ⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3

    x^{2} - x + 1 = \left( x - \frac{1}{2}
ight)^{2} + \frac{3}{4} \geq \frac{3}{4} nên t \geq \frac{\sqrt{3}}{2}

    Phương trình (1) trở thành 4t2 − 3 + m = t ⇔  − 4t2 + t + 3 = m.

    Xét hàm số y =  − 4t2 + t − 3 với t \geq \frac{\sqrt{3}}{2}

    Ta có - \frac{b}{2a} = \frac{1}{8} <
\frac{\sqrt{3}}{2}

    Bảng biến thiên

    Phương trình (1) có nghiệm phương trình có nghiệm t \geq
\frac{\sqrt{3}}{2}

    đồ thị hàm số y =  − 4t2 + t − 3 trên \lbrack\frac{\sqrt{3}}{2}; +
\infty) cắt đường thẳng y = m
\Leftrightarrow m \leq \frac{- 12 + \sqrt{3}}{2} .

    Vậy phương trình (1) có nghiệm khi và chỉ khi m \leq \frac{- 12 + \sqrt{3}}{2}.

  • Câu 33: Thông hiểu

    Tính chiều cao ngọn tháp

    Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,\ B trên mặt đất sao cho ba điểm A,\ BC thẳng hàng. Ta đo được AB = 24\ m, \widehat{CAD} = 63^{0},\ \widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có:

    \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.\sin\beta}{\sin(\alpha- \beta)} = \frac{24.\sin48^{0}}{\sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.\sin\alpha \approx 61,4m

  • Câu 34: Nhận biết

    Chọn câu sai

    Trong các mệnh đề sau tìm mệnh đề sai?

    Mệnh đề \forall
n\mathbb{\in R}:n^{2} > 0” sai khi n = 0.

  • Câu 35: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 36: Thông hiểu

    Chọn đáp án đúng

    Cho tập hợp A = \lbrack m;m + 2\rbrack,B
= \lbrack 1;3). Điều kiện để A \cap
B = \varnothing là:

    Ta có:

    A \cap B = \varnothing \Leftrightarrow
\left\lbrack \begin{matrix}
m \geq 3 \\
m + 2 < 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
m \geq 3 \\
m < - 1 \\
\end{matrix} \right.

  • Câu 37: Nhận biết

    Tìm điểm không thuộc đồ thị

    Xác định điểm không thuộc đồ thị của hàm số y = \frac{1}{2}x^{2}?

    Ta thấy các điểm nằm trên đồ thị của hàm số là: (0;0); (2;2); ( -
2;2).

    Vậy điểm không thuộc đồ thị hàm số đã cho là: (1;2).

  • Câu 38: Nhận biết

    Chọn kết quả đúng

    Cho 4 điểm A,B,C, O bất kì. Chọn kết quả đúng \overrightarrow{AB} =
?

    Ta có:

    \overrightarrow{AB} = \overrightarrow{AO}
+ \overrightarrow{OB} .

  • Câu 39: Thông hiểu

    Tính độ dài BC

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Ghi đáp án vào ô trống

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Đáp án là:

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Khoảng cách từ chân cổng đến trục đối xứng Oy là \frac{8}{2} = 4.

    Hoành độ hai chân cổng là -
4;4

    Tung độ chân cổng là: y = -
\frac{1}{2}.4^{2} = - 8

    Vậy chiều cao của cổng là | - 8| =
8 mét.

  • Câu 41: Nhận biết

    Tìm giá trị nhỏ nhất

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 42: Nhận biết

    Chọn kết quả đúng

    Hãy chọn kết quả đúng khi phân tích vectơ \overrightarrow{AM} theo hai vectơ \overrightarrow{AB} \overrightarrow{AC} của tam giác ABC với trung tuyến AM.

    Hình vẽ minh họa:

    Do M là trung điểm của BC nên ta có \overrightarrow{AM} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).

  • Câu 43: Nhận biết

    Tìm giao của 2 tập hợp

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 44: Thông hiểu

    Tính giá trị biểu thức A

    Cho \cot\alpha = \frac{1}{3}. Giá trị của biểu thức A = \frac{3\sin\alpha +4\cos\alpha}{2\sin\alpha - 5\cos\alpha} là:

    Ta có:

    A = \frac{3\sin\alpha +4sin\alpha.\cot\alpha}{2sin\alpha - 5\sin\alpha.\cot\alpha} = \frac{3 +4\cot\alpha}{2 - 5\cot\alpha} = 13.

  • Câu 45: Vận dụng

    M thuộc miền nghiệm của bất phương trình nào

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant 3} \\   { - 15 \leqslant 8} \end{array}\left( {TM} ight)} ight.

    Vậy điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y> 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) > 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y<- 3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) <  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 <  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

    Thay tọa độ M vào hệ bất phương trình \left\{\begin{matrix}2x-y\leq -3\\ 2x+5y\leq 12x+8\end{matrix}ight. ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2.0 - \left( { - 3} ight) \leqslant  - 3} \\   {2.0 + 5.\left( { - 3} ight) \leqslant 12.0 + 8} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 \leqslant  - 3} \\   { - 15 \leqslant 8} \end{array}\left( L ight)} ight.

    Vậy điểm M(0; -3) không thuộc miền nghiệm của hệ bất phương trình.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo