Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn phương án thích hợp

    Kí hiệu X là tập hợp các cầu thủ x trong đội tuyển bóng rổ, P(x) là mệnh đề chứa biến “x cao trên 180\ cm”. Mệnh đề "\forall x \in X,P(x)" khẳng định rằng:

    Mệnh đề "\forall x \in
X,P(x)" khẳng định rằng : "Mọi cầu thủ trong đội tuyển bóng rổ đều cao trên 180\
cm.".

  • Câu 2: Thông hiểu

    Tính giá trị của P

    Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4}. Tính tích P = ab.

    (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4} nên ta có hệ

    \left\{ \begin{matrix}
a - b + 2 = 6 \\
- \frac{\Delta}{4a} = - \frac{1}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - b = 4 \\
b^{2} - 4ac = a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 8(4 + b) = 4 + b \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 9b - 36 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 16 \\
b = 12 \\
\end{matrix} ight. (thỏa mãn a > 1) hoặc \left\{ \begin{matrix}
a = 1 \\
b = - 3 \\
\end{matrix} ight. (loại).

    Suy ra P = ab = 16.12 = 192.

  • Câu 3: Nhận biết

    Tìm bất phương trình bậc nhất hai ẩn

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 4: Thông hiểu

    Tìm D để ABDC là hình bình hành

    Cho tam giác ABC với A(3; - 1),\ B( - 4;2),\ C(4;3). Tìm Dđể ABDClà hình bình hành?

    Ta có: ABDC là hình bình hành

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow \left\{ \begin{matrix}
- 4 - 3 = x_{D} - 4 \\
2 + 1 = y_{D} - 3
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} = - 3 \\
y_{D} = 6
\end{matrix} \right.\  \Rightarrow D( - 3;6).

  • Câu 5: Vận dụng

    Khẳng định nào sau đây đúng?

    Cho tam giác ABC. Lấy điểm M trên BC sao cho \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0. Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AC}.\overrightarrow{AM} = 0 \Leftrightarrow \overrightarrow{AM}\left(
\overrightarrow{AB} - \overrightarrow{AC} ight) = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0 nên AM\bot BC.

  • Câu 6: Nhận biết

    Tìm nghiệm của phương trình

    Phương trình \sqrt{4x^{2}-3}=x có nghiệm là:

    Điều kiện: 4{x^2} - 3 \geqslant 0

    Phương trình tương đương:

    \begin{matrix}  \sqrt {4{x^2} - 3}  = x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {4{x^2} - 3 = {x^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {3{x^2} = 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {\left[ {\begin{array}{*{20}{c}}  {x =  - 1\left( {ktm} ight)} \\   {x = 1\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được: x=1 thỏa mãn điều kiện

    Vậy phương trình có nghiệm x=1

  • Câu 7: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Cho số thực x < 0. Tìm x để ( -
\infty;16x) \cap \left( \frac{9}{x}; + \infty \right) \neq
\varnothing.

    Để ( - \infty;16x) \cap \left(
\frac{9}{x}; + \infty \right) \neq \varnothing thì giá trị của số thực x phải thỏa bất phương trình 16x > \frac{9}{x}.

    Ta có 16x > \frac{9}{x}
\Leftrightarrow 16x^{2} < 9 (do x
< 0)

    \Leftrightarrow 16x^{2} - 9 <
0

    \Leftrightarrow - \frac{3}{4} < x <
\frac{3}{4}.

    So điều kiện x < 0, suy ra \frac{- 3}{4} < x < 0.

  • Câu 8: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 9: Nhận biết

    Xác định hai vectơ cùng phương

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây là cùng phương?

    Ta có

    \overrightarrow{v} = -\frac{1}{3}\overrightarrow{a} + \frac{1}{4}\overrightarrow{b} = -\frac{1}{6}\left( 2\overrightarrow{a} - \frac{3}{2}\overrightarrow{b}\right) = - \frac{1}{6}\overrightarrow{u}.

    Hai vectơ \overrightarrow{u}\overrightarrow{v} là cùng phương.

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Cho bốn điểm A,\ B,\ C,\ Dphân biệt. Khi đó vectơ \overrightarrow{u} =
\overrightarrow{AD} - \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{DB} là:

    Ta có:

    \overrightarrow{u} = \overrightarrow{AD}
- \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{DB}

    = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BD} =
\overrightarrow{AC} + \overrightarrow{CD} =
\overrightarrow{AD}.

  • Câu 11: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.

    Phương trình hoành độ giao điểm của (P) với dx3 − 6x2 + 9x = mx

    \overset{}{\leftrightarrow}x\left( x^{2}
- 6x + 9 - m ight) = 0\overset{}{\leftrightarrow}\left\lbrack
\begin{matrix}
x = 0 \\
x^{2} - 6x + 9 - m = 0.(1) \\
\end{matrix} ight.

    Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
0^{2} - 6.0 + 9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m eq 9 \\
\end{matrix} ight..

  • Câu 12: Thông hiểu

    Xác định tập hợp điểm thỏa mãn yêu cầu

    Cho hai điểm A,\ B cố định và AB = 8. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} = -
16 là:

    Gọi I là trung điểm của đoạn thẳng AB \rightarrow \overrightarrow{IA} = -
\overrightarrow{IB}

    Ta có:

    \overrightarrow{MA}.\overrightarrow{MB}
= \left( \overrightarrow{MI} + \overrightarrow{IA} \right)\left(
\overrightarrow{MI} + \overrightarrow{IB} \right)

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} \right)\left( \overrightarrow{MI} -
\overrightarrow{IA} \right)

    = {\overrightarrow{MI}}^{2} -
{\overrightarrow{IA}}^{2} = MI^{2} - IA^{2} = MI^{2} -
\frac{AB^{2}}{4}.

    Theo giả thiết, ta có

    MI^{2} - \frac{AB^{2}}{4} = -
16

    \Leftrightarrow MI^{2} =
\frac{AB^{2}}{4} - 16 = \frac{8^{2}}{4} - 16 = 0 \rightarrow M \equiv
I

  • Câu 13: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)

     Thay tọa độ M(1;5)N(-2;8) vào y=ax^{2}+bx+2. Ta có:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{8 = 4a - 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = 1}\end{array}} ight.} ight..

    Do đó y=2x^{2}+x+2.

  • Câu 14: Nhận biết

    Tìm tọa độ của vectơ thỏa mãn

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 15: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 16: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 17: Vận dụng

    Chọn phương án đúng

    Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ AB có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40m, \widehat{CAB} = 45^{0}\widehat{CBA} = 70^{0}.Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABC, ta có \frac{AC}{\sin B} = \frac{AB}{\sin C}

    \sin C = \sin(\alpha + \beta) nên AC = \frac{AB.sin\beta}{\sin(\alpha +
\beta)} =
\frac{40.sin70^{0}}{sin115^{0}} \approx 41,47m.

  • Câu 18: Thông hiểu

    Tìm tọa độ trung điểm BC

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Chọn khẳng định đúng

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 20: Nhận biết

    Tìm khẳng định đúng

    Cho hai tập hợp A = \left\{ 1;2;3;7
\right\},\ \ B = \left\{ 2;4;6;7;8 \right\}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
A \cap B = \left\{ 2;7 \right\} \\
A \cup B = \left\{ 1;2;3;4;6;7;8 \right\} \\
A\backslash B = \left\{ 1;3 \right\} \\
B\backslash A = \left\{ 4;6;8 \right\} \\
\end{matrix} \right..

  • Câu 21: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{x+2}-\sqrt{x+3}.

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{x \ge  - 2}\\{x \ge  - 3}\end{array} \Leftrightarrow x \ge  - 2} ight..

    Vậy D=[-2;+\infty).

  • Câu 22: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 23: Nhận biết

    Chọn kết quả đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 24: Vận dụng cao

    Tìm m để phương trình có nghiệm duy nhất

    Cho \frac{x^{2} -
2(m + 1)x + 6m - 2}{\sqrt{x - 2}} = \sqrt{x - 2}(1). Với m là bao nhiêu thì (1) có nghiệm duy nhất

    ĐK x > 2

    \frac{x^{2} - 2(m + 1)x + 6m - 2}{\sqrt{x
- 2}} = \sqrt{x - 2} \Rightarrow x^{2} - 2(m + 1)x + 6m - 2 = x - 2
\Leftrightarrow x^{2} - (2m + 3)x + 6m = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x = 2m \\
\end{matrix} ight..

    Phương trình (1) có nghiệm duy nhất \Leftrightarrow \left\lbrack \begin{matrix}
2m = 3 \\
2m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{3}{2} \\
m \leq 1 \\
\end{matrix} ight..

  • Câu 25: Nhận biết

    Chọn khẳng định đúng

    Chọn khẳng định đúng:

    Khẳng định đúng là: “Nếu G là trọng tâm tam giác ABC thì \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}.”

  • Câu 26: Thông hiểu

    Tính độ dài vectơ

    Cho tam giác ABC vuông tại AAB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}.

     

    Đặt \overrightarrow {AB}=\overrightarrow {BD}.

    Ta có: \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {CB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {CD} } ight| = CD.

    Áp dụng định lý Pytago trong tam giác ACD: CD = \sqrt {{6^2} + {4^2}}  = 2\sqrt {13}.

  • Câu 27: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 28: Thông hiểu

    Giải phương trình

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 29: Nhận biết

    Tìm tam thức bậc hai thỏa mãn

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

  • Câu 30: Vận dụng

    Tìm giá trị lớn nhất của biểu thức F

    Giá trị lớn nhất của biết thức F(x; y) = x + 2y với điều kiện \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight.:

    Nghiệm của hệ \left\{\begin{matrix}0\leq y\leq 4\\ x\geq0\\ x-y-1\leq 0\\ x+2y-10\leq 0 \end{matrix}ight. là miền đa giác OABCD với O(0;0);A(1;0);B(4;3);C(2;4);D(0;4).

    Giá trị lớn nhất F(x;y)=x+2y đạt được tại 1 trong 5 đỉnh của đa giác.

    Với O(0;0) \Rightarrow F=0.

    VớiA(1;0)\Rightarrow F=1.

    Với B(4;3) \Rightarrow F=10.

    Với C(2;4) \Rightarrow F=10.

    Với D(0;4) \Rightarrow F=8.

    Vậy GTLN F=10.

  • Câu 31: Nhận biết

    Tìm điểm không thuộc miền nghiệm của hệ

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight.?

     Thay tọa độ (0;0) vào hệ \left\{\begin{matrix}2x+3y-1>0\\ 5x-y+4<0\end{matrix}ight. ta được \left\{\begin{matrix}-1>0\\ 4<0\end{matrix}ight. không thỏa mãn. Suy ra điểm này không thuộc miền nghiệm của hệ.

  • Câu 32: Vận dụng

    Chọn hệ thức đúng

    Cho tam giác ABC và một điểm M tùy ý. Hãy chọn hệ thức đúng:

    Ta có:

    2\overrightarrow{MA} +
\overrightarrow{MB} - 3\overrightarrow{MC}

    = 2\overrightarrow{MC} +
2\overrightarrow{CA} + \overrightarrow{MC} + \overrightarrow{CB} -
3\overrightarrow{MC} = 2\overrightarrow{CA} +
\overrightarrow{CB}.

  • Câu 33: Vận dụng

    Tìm bảng biến thiên của tam thức bậc hai

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c có đồ thị như hình vẽ dưới đây

    Tìm bảng biến thiên của tam thức bậc hai

    Bảng biến thiên của tam thức bậc hai là

    Từ đồ thị ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = – 1 và x = 3

    => f(x) có 2 nghiệm phân biệt là x = –1; x = 3 ta loại các đáp án

    Tìm bảng biến thiên của tam thức bậc hai Tìm bảng biến thiên của tam thức bậc hai

    Ta lại có: f(x) nhận giá trị dương trên các khoảng (– ∞; –1) và (3; + ∞); f(x) nhận giá trị âm trên khoảng (–1; 3) ta loại đáp án 

    Tìm bảng biến thiên của tam thức bậc hai

    Vậy bảng biến thiên đúng là

    Tìm bảng biến thiên của tam thức bậc hai
  • Câu 34: Thông hiểu

    Tìm m để bất phương trình vô nghiệm

    Cho bất phương trình m{x^2} - (2m - 1)x + m + 1 < 0 (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

    Để m{x^2} - (2m - 1)x + m + 1 < 0 thì m{x^2} - (2m - 1)x + m + 1 \geqslant 0 nghiệm đúng với \forall x \in \mathbb{R}.

    Nghĩa là:\left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( {2m - 1} ight)}^2} - 4m\left( {m + 1} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4{m^2} - 4m + 1 - 4{m^2} - 4m \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   { - 8m + 1 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \geqslant \dfrac{1}{8}} \end{array}} ight. \Leftrightarrow m \geqslant \frac{1}{8} \hfill \\ \end{matrix}

  • Câu 35: Nhận biết

    Tìm trục đối xứng

    Parabol y =  − x2 + 2x + 3 có phương trình trục đối xứng là

    Parabol y =  − x2 + 2x + 3 có trục đối xứng là đường thẳng x = -
\frac{b}{2a}  ⇔ x = 1.

  • Câu 36: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 37: Thông hiểu

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{\sqrt{5}}{3}\pi < \alpha <
\frac{3\pi}{2}. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{2}{3} \\
\pi < \alpha < \frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha = -
\frac{2}{3}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{2}{\sqrt{5}}.

  • Câu 38: Vận dụng cao

    Tìm điều kiện của a và b

    Cho đường thẳng (d):y = \left( a^{2} - 2 ight)x + a + b và bất phương trình x + y - 3 <
0. Tìm điều kiện của ab để mọi điểm thuộc (d) đều là nghiệm của bất phương trình đã cho.

    Để mọi điểm thuộc đường thẳng  (d)  đều là nghiệm của bất phương trình thì điều kiện cần là  (d):y = \left( a^{2} - 2 ight)x + a + b  phải song song với \left( {d'} ight):y =  - x + 3. Khi đó ta có:

    \left\{ \begin{matrix}
a^{2} - 2 = - 1 \\
a + b eq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = - 1 \\
b eq 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight. ta được (d):y = - x + b + 1

    Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng (d) là đồ thị của đường thẳng d' khi d' tịnh tiến xuống dưới theo trục Oy.

    Nghĩa là b + 1 < 3 \Rightarrow b <
2.

  • Câu 39: Thông hiểu

    Chọn kết luận đúng

    Cho ba điểm A,B,C phân biệt. Khi đó:

    Điều kiện cần và đủ để A,B,C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 40: Nhận biết

    Tính độ dài cạnh b

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 41: Nhận biết

    Có bao nhiêu vectơ thỏa mãn

    Cho ba điểm phân biệt M,N,P. Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho?

    Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho là

    \overrightarrow{MN},\overrightarrow{NM},\overrightarrow{MP},\overrightarrow{PM},\overrightarrow{NP},\overrightarrow{PN}.

  • Câu 42: Thông hiểu

    Chọn kết luận đúng

    Chọn đáp án sai: Một tam giác giải được nếu biết:

    Ta có: Một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2).

  • Câu 43: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 44: Vận dụng cao

    Tính số đo góc B

    Cho tam giác ABCAB =
c;BC = a;AC = b, độ dài các cạnh tam giác thỏa mãn biểu thức \frac{1}{a + b} + \frac{1}{b + c} =
\frac{3}{a + b + c}. Tính độ lớn góc \widehat{B}?

    Ta có:

    \frac{1}{a + b} + \frac{1}{b + c} =
\frac{3}{a + b + c}

    \Leftrightarrow \frac{a + b + c}{a + b}
+ \frac{a + b + c}{b + c} = 3

    \Leftrightarrow 1 + \frac{c}{a + b} + 1
+ \frac{a}{b + c} = 3

    \Leftrightarrow \frac{c}{a + b} +
\frac{a}{b + c} = 1

    \Leftrightarrow c(b + c) + a(a + b) = (b
+ c)(a + b)

    \Leftrightarrow c^{2} + cb + a^{2} + ab
= ab + b^{2} + ac + bc

    \Leftrightarrow c^{2} + a^{2} - b^{2} =
ac

    \Leftrightarrow \frac{c^{2} + a^{2} -
b^{2}}{2ac} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{B} =
\frac{1}{2}

    \Leftrightarrow \widehat{B} =
60^{0}

  • Câu 45: Thông hiểu

    Tính số đo góc C

    Cho tam giác ABC thỏa mãn BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC =
0. Khi đó, góc C có số đo là:

    Theo đề bài ra ta có:

    BC^{2} + AC^{2} - AB^{2} - \sqrt{2}BC.AC
= 0

    \Leftrightarrow BC^{2} + AC^{2} - AB^{2}
= \sqrt{2}BC.AC

    \Leftrightarrow \frac{BC^{2} + AC^{2} -
AB^{2}}{BC \cdot AC} = \sqrt{2}

    \Leftrightarrow 2\cos C - \sqrt{2} =
0

    \Leftrightarrow \cos C = \frac{\sqrt{2}}{2}\Rightarrow \widehat{C} = 45^{\circ}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo