Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 9 Phương pháp tọa độ trong mặt phẳng sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho tam giác ABCM là trung điểm của BC,\ \ \ G là trọng tâm của tam giác ABC. Khẳng định nào sau đây đúng?

    G là trọng tâm của tam giác ABC nên \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM}.M là trung điểm của BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight). Do đó \overrightarrow{AG}
= \frac{2}{3}.\frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight) = \frac{1}{3}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight).

  • Câu 2: Nhận biết

    Tìm tọa độ vectơ

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 3: Nhận biết

    Viết phương trình elip

    Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng 6 và 0. Viết phương trình elip.

    Ta có: \left\{ \begin{matrix}
2a = 6 \Rightarrow a = 3 \\
2b = 4 \Rightarrow b = 2 \\
\end{matrix} ight.

    Phương trình elip là: \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1

  • Câu 4: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng d đi qua điểm M(4; - 7) và song song với trục Ox.

    {\overrightarrow{u}}_{Ox} =
(1;0)\overset{ightarrow}{}{\overrightarrow{u}}_{d} =
(1;0)\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 4 + t \\
y = - 7 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(0; - 7) \in d
ightarrow d:\left\{ \begin{matrix}
x = t \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 5: Vận dụng

    Chọn đáp án đúng

    Viết phương trình đường thẳng (\Delta) đi qua giao điểm hai đường thẳng \left( d_{1} ight):2x + y - 3 = 0;\left(
d_{2} ight):x - 2y + 1 = 0 và cosin góc giữa (\Delta)với đường thẳng \left( d_{3} ight):y = 1 một góc bằng \frac{\sqrt{2}}{2}?

    Gọi A là giao điểm hai đường thẳng \left(
d_{1} ight):2x + y - 3 = 0;\left( d_{2} ight):x - 2y + 1 =
0, khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
2x + y - 3 = 0 \\
x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(1;1)

    Phương trình đường thẳng \Delta có dạng y = k\left( x - x_{0} ight) +
y_{0}

    A \in \Delta \Rightarrow y = k(x - 1)
+ 1 \Rightarrow kx - y - k + 1 = 0

    Mặt khác

    \cos\left( \Delta;d_{3} ight) =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{\left| k.0 + ( -
1).1 ight|}{\sqrt{k^{2} + ( - 1)^{2}}.\sqrt{0^{2} + 1^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{| -
1|}{\sqrt{k^{2} + 1}} = \frac{\sqrt{2}}{2} \Leftrightarrow \sqrt{k^{2} +
1} = \sqrt{2}.| - 1|

    \Leftrightarrow \sqrt{k^{2} + 1} =
\sqrt{2}

    \Leftrightarrow k^{2} + 1 = 2
\Leftrightarrow k^{2} = 1 \Leftrightarrow k = \pm 1

    Với k = 1 \Rightarrow x - y =
0

    Với k = - 1 \Rightarrow - x - y + 2 = 0
\Rightarrow x + y - 2 = 0

    Vậy phương trình đường thẳng là: \left\lbrack \begin{matrix}
x + y - 2 = 0 \\
x - y = 0 \\
\end{matrix} ight..

  • Câu 6: Nhận biết

    Mối liên hệ giữa hai đường thẳng

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Tính giá trị nhỏ nhất biểu thức

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 8: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 9: Nhận biết

    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 là:

    Ta có: \begin{matrix}
(C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 \Leftrightarrow x^{2} + y^{2} - 4x
+ 2y - \frac{1}{2} = 0 \\
ightarrow \left\{ \begin{matrix}
a = 2,\ b = - 1 \\
c = - \frac{1}{2} \\
\end{matrix} ight.\  ightarrow I(2; - 1),\ R = \sqrt{4 + 1 +
\frac{1}{2}} = \frac{\sqrt{22}}{2}. \\
\end{matrix}

  • Câu 10: Thông hiểu

    Chọn khẳng định đúng

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 11: Nhận biết

    Định tọa độ điểm D thỏa mãn đẳng thức

    Cho hai điểm A(1;0)B(0; - 2). Tọa độ điểm D sao cho \overrightarrow{AD} = -
3\overrightarrow{AB} là:

    Ta có:

    \overrightarrow{AD} = -
3\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} - x_{A} = - 3\left( x_{B} - x_{A} \right) \\
y_{D} - y_{A} = - 3\left( y_{B} - y_{A} \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} - 1 = - 3(0 - 1) \\
y_{D} - 0 = - 3( - 2 - 0)
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 4 \\
y_{D} = 6
\end{matrix} \right..

  • Câu 12: Vận dụng

    Đẳng thức nào sau đây sai?

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB} = \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC} .

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 13: Thông hiểu

    Viết phương trình đường thẳng AB

    Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

    Với A(4; 0), B(0; 5) ta có: \overrightarrow {AB}  = \left( { - 4;5} ight)

    Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận \overrightarrow {AB}  = \left( { - 4;5} ight) làm vectơ chỉ phương.

    Khi đó đường thẳng AB nhận \overrightarrow n  = \left( {5;4} ight) làm vectơ pháp tuyến.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến \overrightarrow n  = \left( {5;4} ight) nên có phương trình tổng quát là: 5\left( {x-4} ight) + 4\left( {y-0} ight) = 0

    \begin{matrix}   \Leftrightarrow 5x + 4y-20 = 0 \hfill \\   \Leftrightarrow 4y = -5x + 20 \hfill \\   \Leftrightarrow y = \dfrac{{ - 5}}{4}x + 5 \hfill \\ \end{matrix}

    Do đó phương trình ở phương án y=\frac{-5}{4}x+15 không phải phương trình AB.

    Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là: \frac{x}{4}+\frac{y}{5}=1

    Do đó phương án \frac{x}{4}+\frac{y}{5}=1 đúng.

    Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là: 

    \frac{{x - 4}}{{0 - 4}} = \frac{{y - 0}}{{5 - 0}} \Leftrightarrow \frac{{x - 5}}{{ - 4}} = \frac{y}{5}

    Do đó phương án \frac{x-4}{-4}=\frac{y}{5} đúng.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương \overrightarrow {AB}  = \left( { - 4;5} ight) nên có phương trình tham số là: \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight. (t ∈ R)

    Do đó phương án \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight.(t ∈ R) đúng.

  • Câu 14: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 15: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình vuông ABCD có cạnh bằng a.

    TOOL-NEW

    a) \overrightarrow{BA} -
\overrightarrow{CB} = \overrightarrow{BD}.Đúng||Sai

    b) Độ dài \overrightarrow{AB} +
\overrightarrow{AD} bằng 2a.Sai||Đúng

    c) Gọi E là điểm đối xứng với A qua B. Khi đó \overrightarrow{BD} + \overrightarrow{BE} =
\overrightarrow{BC}.Đúng||Sai

    d) Độ dài \overrightarrow{DB} +
\overrightarrow{DC} bằng a\sqrt{5}.Đúng||Sai

    Đáp án là:

    Cho hình vuông ABCD có cạnh bằng a.

    TOOL-NEW

    a) \overrightarrow{BA} -
\overrightarrow{CB} = \overrightarrow{BD}.Đúng||Sai

    b) Độ dài \overrightarrow{AB} +
\overrightarrow{AD} bằng 2a.Sai||Đúng

    c) Gọi E là điểm đối xứng với A qua B. Khi đó \overrightarrow{BD} + \overrightarrow{BE} =
\overrightarrow{BC}.Đúng||Sai

    d) Độ dài \overrightarrow{DB} +
\overrightarrow{DC} bằng a\sqrt{5}.Đúng||Sai

    a) Đúng

    Ta có: \overrightarrow{BA} -
\overrightarrow{CB} = \overrightarrow{BA} + \overrightarrow{BC} =
\overrightarrow{BD}.

    b) Sai

    Ta có: \left| \overrightarrow{AB} +
\overrightarrow{AD} \right| = \left| \overrightarrow{AC} \right| =
a\sqrt{2}.

    c) Đúng

    hình 2

    Ta có \left\{ \begin{matrix}
BE = DC \\
BE//DC
\end{matrix} \right.\  \RightarrowTứ giác BECD là hình bình hành.

    Do đó \overrightarrow{BD} +
\overrightarrow{BE} = \overrightarrow{BC}.

    d) Đúng

    Ta có:

    \left| \overrightarrow{DB} +
\overrightarrow{DC} \right| = \left| \overrightarrow{DE} \right| = DE =
2DI

    = 2\sqrt{DC^{2} + CI^{2}} = 2\sqrt{a^{2}
+ \left( \frac{a}{2} \right)^{2}} = a\sqrt{5}.

  • Câu 16: Thông hiểu

    Chọn khẳng định đúng

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 17: Thông hiểu

    Tìm tâm sai của elip

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 18: Vận dụng

    Tìm tập hợp vị trí điểm M

    Cho tam giác ABC và điểm M thỏa mãn điều kiện \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Mệnh đề nào sau đây sai?

    Ta có \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}
\Leftrightarrow \overrightarrow{BA} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MC} =
\overrightarrow{AB}

    \Rightarrow MABC là hình bình hành \Rightarrow \overrightarrow{MA} =
\overrightarrow{CB}.

    Do đó \overrightarrow{MA} =
\overrightarrow{BC} sai.

  • Câu 19: Vận dụng

    Có bao nhiêu đường tròn thỏa mãn

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 20: Nhận biết

    Tìm độ dài đoạn thẳng AB

    Tính độ dài đoạn thẳng AB biết tọa độ A(1;1),B(4;5)?

    Ta có: AB = \sqrt{(4 - 1)^{2} + (5 -
1)^{2}} = 5

  • Câu 21: Thông hiểu

    Chọn đẳng thức đúng

    Cho tam giác ABCI thỏa \overrightarrow{IA} =
3\overrightarrow{IB}. Đẳng thức nào sau đây là đẳng thức đúng?

    Ta có

    \overrightarrow{IA} =
3\overrightarrow{IB} \Leftrightarrow \overrightarrow{CA} -
\overrightarrow{CI} = 3\left( \overrightarrow{CB} - \overrightarrow{CI}
\right)

    \Leftrightarrow 2\overrightarrow{CI} =
3\overrightarrow{CB} - \overrightarrow{CA} \Leftrightarrow
\overrightarrow{CI} = \frac{1}{2}\left( 3\overrightarrow{CB} -
\overrightarrow{CA} \right).

  • Câu 22: Nhận biết

    Viết phương trình tham số của đường thẳng

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 23: Nhận biết

    Xét vị trí tương đối của hai đường thẳng

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 24: Nhận biết

    Tính tiêu cự của Elip

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 25: Nhận biết

    Chọn khẳng định sai

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 26: Thông hiểu

    Tìm tọa độ đỉnh A

    Các điểm M(2;3), N(0; - 4), P(
- 1;6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC. Tọa độ đỉnh A của tam giác là:

    Ta có: APMNlà hình bình hành nên \left\{ \begin{matrix}x_{A} + x_{M}= x_{P} + x_{N} \\y_{A} + y_{M} = y_{P} + y_{N}\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{A} + 2 = 0 + ( - 1) \\
y_{A} + 3 = ( - 4) + 6
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A} = - 3 \\
y_{A} = - 1
\end{matrix} \right..

  • Câu 27: Nhận biết

    Chọn kết quả đúng

    Hãy chọn kết quả đúng khi phân tích vectơ \overrightarrow{AM} theo hai vectơ \overrightarrow{AB} \overrightarrow{AC} của tam giác ABC với trung tuyến AM.

    Hình vẽ minh họa:

    Do M là trung điểm của BC nên ta có \overrightarrow{AM} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).

  • Câu 28: Nhận biết

    Chọn mệnh đề đúng

    Cho A,\ B,\ C phân biệt, mệnh đề dưới đây đúng là:

    Ta có: \overrightarrow{AB} +
\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =
\overrightarrow{CB}.

  • Câu 29: Thông hiểu

    Tìm phương trình chính tắc của elip

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 30: Vận dụng

    Tìm m để ba đường thẳng đồng quy

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 31: Nhận biết

    Khẳng định nào sau đây sai?

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 32: Nhận biết

    Phương trình tổng quát của đường tròn

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 33: Vận dụng cao

    Tính khoảng cách giữa hai điểm A và B

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 34: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0d_{2}: - x + my + m^{2} - 2m + 1 =
0 cắt nhau?

    \left\{ \begin{matrix}
d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0 \\
d_{2}: - x + my + m^{2} - 2m + 1 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \cap d_{2} =M}{ightarrow}\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}: - 3x + 2y - 1 = 0 \\d_{2}: - x + 1 = 0 \\\end{matrix} ight.\  ightarrow TM \\meq0 ightarrow \frac{m - 3}{- 1}eq\frac{2}{m}\Leftrightarrow \left\{ \begin{matrix}meq1 \\meq2 \\\end{matrix} ight.\  \\\end{matrix} ight.\ .

    Chọn \left\{ \begin{matrix}
m eq 1 \\
m eq 2 \\
\end{matrix} ight..

  • Câu 35: Nhận biết

    Xác định vectơ

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 36: Thông hiểu

    Tìm tọa độ điểm E

    Trong mặt phẳng Oxy, cho B(5; - 4),C(3;7). Tọa độ của điểm E đối xứng với C qua B

    Ta có: E đối xứng với C qua B
\Rightarrow B là trung điểm đoạn thẳng EC

    Do đó, ta có: \left\{ \begin{matrix}
5 = \frac{x_{E} + 3}{2} \\
- 4 = \frac{y_{E} + 7}{2}
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 7 \\
y_{E} = - 15
\end{matrix} \right.\  \Rightarrow E(7; - 15).

  • Câu 37: Nhận biết

    Chọn đáp án đúng

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 38: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 39: Thông hiểu

    Tính khoảng cách từ tâm đến trục hoành

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 40: Nhận biết

    Viết phương trình tham số của đường thẳng

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)M(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    Có thể kiểm tra đường thẳng nào không đi qua điểm M(1; - 3).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo