Chọn đẳng thức đúng
Cho 4 điểm bất kì
. Đẳng thức nào sau đây đúng?
Ta có:
.
Đề kiểm tra 45 phút Toán 10 Chương 9 Phương pháp tọa độ trong mặt phẳng sách Chân trời sáng tạo giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Chọn đẳng thức đúng
Cho 4 điểm bất kì
. Đẳng thức nào sau đây đúng?
Ta có:
.
Tìm tâm và bán kính đường tròn
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Đẳng thức nào sau đây sai?
Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Chọn đẳng thức đúng
Cho 4 điểm bất kì
. Đẳng thức nào sau đây đúng?
Theo quy tắc 3 điểm ta có: .
Khẳng định nào sau đây đúng?
Cho tam giác
có
là trung điểm của
là trọng tâm của tam giác
Khẳng định nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Vì
là trung điểm của
nên
Do đó
Xác định giá trị biểu thức P
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Tìm vectơ chỉ phương
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Tìm tọa độ của vectơ thỏa mãn
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có
Viết phương trình tổng quát của ∆
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Tìm cặp số thỏa mãn
Cho tam giác
, điểm I thoả mãn:
. Nếu
thì cặp số
bằng:
Ta có:
.
Tính góc giữa hai đường thẳng
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Khẳng định nào sau đây là sai.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Tìm x thỏa mãn điều kiện
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Chọn khẳng định đúng
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Chọn đáp án đúng
Cho hai điểm
và
. Vec tơ đối của vectơ
có tọa độ là:
Ta có vectơ đối của là
.
Viết phương trình tiếp tuyến của đường tròn
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Tính độ dài của vectơ
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Tìm phương trình đường tròn
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Chọn đáp án thích hợp
Cho hình vuông
cạnh
, độ dài vectơ
bằng:
Ta có:
.
Tìm phương trình chính tắc của elip
Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng
.
Elip có trục lớn gấp đôi trục bé
.
Elip có tiêu cự bằng
.
Ta có . Khi đó,
.
Phương trình chính tắc của Elip là .
Tính giá trị tham số
Cho tam giác
có
là trung điểm của
. Điểm
xác định
. Đường thẳng
đi qua
song song với
cắt
lần lượt tại
. Điểm
nằm trên cạnh
sao cho diện tích các tam giác
và
bằng nhau. Biết
. Tính giá trị của
?
Hình vẽ minh họa:
Theo định lí Ta – lét ta có:
Mặt khác mà ba điểm
thẳng hàng nên theo định lí Menelaus ta được:
Ta có:
Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó
Ta có:
Mà
Hay
Vậy
Tìm phương trình đường tròn
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục hoành có phương trình là:
.
Vậy đường tròn cần tìm là:
Tìm hệ số góc k của đường thẳng
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Tìm vectơ cùng hướng
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Tính khoảng cách giữa hai điểm A và B
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Tìm phương trình chính tắc của elip
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Tìm độ dài đường kính
Cho đường tròn
, hỏi độ dài đường kính bằng bao nhiêu?
Ta có tâm . Suy ra bán kính
.
Do đó đường kính bằng .
Xác định vectơ
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó ![]()
Ta có: G là trọng tâm tam giác ABC =>
Tính khoảng cách từ một điểm đến đường thẳng
Cho đường thẳng
và tọa độ điểm
. Tính
?
Ta có khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Tính độ dài vectơ
Cho hình thang vuông
có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Tìm điểm thỏa mãn
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và
. Tìm điểm
thuộc trục tung sao cho diện tích tam giác
bằng ![]()
Ta có
Tìm điểm thuộc đường thẳng
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Chọn đáp án thích hợp
Trong mặt phẳng
, cho các điểm
. Tọa độ điểm
thỏa mãn
là
Ta có:
.
Tìm tọa độ giao điểm
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Chọn câu đúng
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Câu nào sau đây đúng?
Hình vẽ minh họa:

Do là trung điểm của
nên ta có:
.
Xác định phương trình Elip
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?
Phương trình Elip có dạng
Vậy phương trình cần tìm là
Tính bán kính đáy của tháp
Một tòa tháp có mặt cắt hình hypebol có phương trình
. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Viết phương trình tham số của đường thẳng
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Xác định vị trí tương đối của hai đường thẳng
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: