Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Hàm số bậc hai

Trắc nghiệm Toán 10: Hàm số bậc hai được Vndoc trình bày dưới dạng bài tập trực tuyến nên các em học sinh có thể trực tiếp vào làm bài và kiểm tra kết quả ngay khi làm xong. Nhằm giúp học sinh lớp 10 củng cố và rèn luyện kỹ năng tính toán, khả năng tư duy với các dạng bài tập mới nhất. 

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm tọa độ đỉnh parabol

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Hướng dẫn:

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 2: Nhận biết
    Tìm hàm số bậc hai

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Hướng dẫn:

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 3: Thông hiểu
    Đồ thị của hàm số bậc hai

    Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?

    Hướng dẫn:

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}. Parabol này quay bề lõm lên trên nếu a > 0.

    Hàm số y = 2x + x^{2}a = 1 > 0

    => Đồ thị hàm số y = 2x + x^{2} có bề lõm quay lên.

  • Câu 4: Thông hiểu
    Tìm khoảng đồng biến nghịch biến

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Gợi ý:

    Nếu a > 0 thì hàm số y = f(x) = a{x^2} + bx + c nghịch biến trên khoảng \left( { - \infty  ;- \frac{b}{{2a}}} ight), đồng biến trên khoảng \left( { - \frac{b}{{2a}}; + \infty } ight)

    Nếu a<0 thì hàm số y = f(x) = a{x^2} + bx + c đòng biến trên khoảng \left( { - \infty  ;- \frac{b}{{2a}}} ight), nghịch biến trên khoảng \left( { - \frac{b}{{2a}}; + \infty } ight)

    Hướng dẫn:

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 5: Thông hiểu
    Xác định hàm số bậc hai

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hướng dẫn:

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 6: Vận dụng
    Rút gọn biểu thức

    Cho hàm số y=f(x)=ax^{2}+bx+c. Rút gọn biểu thức f(x + 3) - 3f(x + 2) + 3f(x + 1) ta được:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  f\left( {x + 3} ight) = a{\left( {x + 3} ight)^2} + b\left( {x + 3} ight) + c \hfill \\   = a\left( {{x^2} + 6x + 9} ight) + bx + 3b + c \hfill \\   = a{x^2} + 6ax + 9a + bx + 3b + c \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 2} ight) = a{\left( {x + 2} ight)^2} + b\left( {x + 2} ight) + c \hfill \\   = a\left( {{x^2} + 4x + 4} ight) + bx + 2b + c \hfill \\   = a{x^2} + 4ax + 4a + bx + 2b + c \hfill \\   = a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 1} ight) = a{\left( {x + 1} ight)^2} + b\left( {x + 1} ight) + c \hfill \\   = a\left( {{x^2} + 2x + 1} ight) + bx + b + c \hfill \\   = a{x^2} + 2ax + a + bx + b + c \hfill \\   = a{x^2} + \left( {2a + b} ight)x + a + b + c \hfill \\ \end{matrix}

    Suy ra:

    \begin{matrix}  f(x + 3) - 3f(x + 2) + 3f(x + 1) \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\   - 3\left[ {a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c} ight] \hfill \\   + 3\left[ {a{x^2} + \left( {2a + b} ight)x + a + b + c} ight] \hfill \\   = a{x^2} + bx + c \hfill \\ \end{matrix}

  • Câu 7: Vận dụng
    Tính quãng đường di chuyển của vật

    Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8 m/s^{2}, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.

    Hướng dẫn:

    Gọi vận tốc ban đầu của vật là v_0 = 12 m/s.

    Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.

    Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:

    s = {v_0}t + \frac{1}{2}g{t^2}

    Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.

    Ta có hàm số: s = f\left( t ight) = 12t + \frac{1}{2}.9,8.{t^2} = 12t + 4,9{t^2}

    Khi t = 7 thì vật đã rơi được quãng đường là:

    s = f(7) = 12.7 + 4,9. 72 = 324,1 (m).

  • Câu 8: Vận dụng
    Đồ thị của hàm số bậc hai

    Hình nào sau đây là đồ thị của hàm số y=-\frac{1}{2}x^{2}+x?

    Hướng dẫn:

    Hàm số y=-\frac{1}{2}x^{2}+x? có các hệ số a = − 1 2 −12 < 0, b = 1, c = 0

    a =  - \frac{1}{2} < 0 nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

    Đồ thị của hàm số bậc hai Đồ thị của hàm số bậc hai

    Đồ thị có toạ độ đỉnh {x_S} =  - \frac{b}{{2a}} = 1 tung độ {y_S} =  - \frac{\Delta }{{4a}} = \frac{1}{2} hay S\left( {1;\frac{1}{2}} ight). Do đó ta loại hình vẽ

    Đồ thị của hàm số bậc hai

  • Câu 9: Nhận biết
    Trục đối xứng của hàm số bậc hai

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Gợi ý:

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}

    Hướng dẫn:

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 10: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 10 - Chân trời sáng tạo

Xem thêm