Tìm k thỏa mãn điều kiện
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!
Tìm k thỏa mãn điều kiện
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
và vectơ
có độ dài bằng nhau.
Ta có:
Để .
Tìm biểu thức sai
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Chọn khẳng định sai?
Cho tam giác
, có trọng tâm
. Gọi
lần lượt là trung điểm của
. Chọn khẳng định sai?
Ta có: nên
sai.
Chọn .
Xác định vị trí điểm M thỏa mãn yêu c
Cho tam giác
và điểm
thỏa mãn
. Tìm vị trí điểm ![]()
Hình vẽ minh họa:

Gọi là trung điểm của
là trung điểm
Tìm điểm thỏa mãn
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Với . Ta có:
. Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.
Tính độ dài BC
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tìm tập hợp vị trí điểm M
Cho tam giác
Tập hợp tất cả các điểm
thỏa mãn đẳng thức
là
Ta có
Mà cố định
Tập hợp điểm
là đường tròn tâm
, bán kính
.
Tính tích vô hướng của hai vce y
Cho tam giác
cân tại
,
và
. Tính
.
Ta có:
.
Tìm số nghiệm của phương trình
Cho phương trình
. Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Tính tổng hai vectơ
Cho tam giác ABC. Gọi
lần lượt là trung điểm các cạnh
. Hỏi
bằng vectơ nào?
Hình vẽ minh họa:

Theo qui tắc hình bình hành ta có .
Tìm khẳng định sai
Hình bình hành
tâm
. Khẳng định sai là:
Ta có: .
Chọn đáp án sai .
Xác định mệnh đề đúng
Cho
là hai tập hợp khác rỗng. Mệnh đề nào sau đây đúng?
Biểu đồ Ven:

Ta có
Xét tính đúng sai của các khẳng định
Cho hình bình hành
với
và
lần lượt là trung điểm của
và
. Khi đó:
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Cho hình bình hành
với
và
lần lượt là trung điểm của
và
. Khi đó:
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Hình vẽ minh họa

a) Đúng
Theo qui tắc hình bình hành ta có: .
b) Sai
Do là hình bình hành, ta có:
.
Suy ra .
c) Đúng
Do là hình bình hành, ta có:
.
Do là hình bình hành, ta có:
.
.
d) Đúng
Do là hình bình hành, ta có
, suy ra
.
Xét tính đúng sai của các khẳng định
Cho lục giác đều
có tâm
. Khi đó:
a)
cùng phương với
. Đúng||Sai
b) Có 4 vectơ khác vectơ không và bằng với
. Sai||Đúng
c)
và
là 2 vectơ đối nhau. Sai||Đúng
d) Có 4 vectơ khác vectơ không và cùng hướng với vectơ
. Đúng||Sai
Cho lục giác đều
có tâm
. Khi đó:
a)
cùng phương với
. Đúng||Sai
b) Có 4 vectơ khác vectơ không và bằng với
. Sai||Đúng
c)
và
là 2 vectơ đối nhau. Sai||Đúng
d) Có 4 vectơ khác vectơ không và cùng hướng với vectơ
. Đúng||Sai
Hình vẽ minh họa

a) Đúng
Hai vectơ có giá song song với nhau.
b) Sai
Có 3 vectơ bằng với là :
.
c) Sai
Độ dài bằng 2 lần độ dài
.
d) Đúng
Có 4 vectơ khác vectơ không và cùng hướng với vectơ là
.
Tìm tọa độ vecto
Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Tìm tọa độ vectơ thoả mãn
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Ghi đáp án vào ô trống
Một chiếc cổng parabol dạng
có chiều rộng
. Hỏi chiều cao của chiếc cổng là?

Đáp án: 8
Một chiếc cổng parabol dạng
có chiều rộng
. Hỏi chiều cao của chiếc cổng là?

Đáp án: 8
Khoảng cách từ chân cổng đến trục đối xứng Oy là .
Hoành độ hai chân cổng là
Tung độ chân cổng là:
Vậy chiều cao của cổng là mét.
Chọn khẳng định đúng
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Tính độ dài đoạn AM
Tam giác
có
là điểm trên cạnh
sao cho
. Độ dài đoạn
bằng bao nhiêu?
Trong tam giác có
mà
Suy ra là trung điểm
Suy ra: .
Tính giá trị cotang của góc
Giá trị
là:
Ta có: .
Tìm số đo góc A
Cho
vuông tại
và có
. Số đo của góc
là:
Trong có:
.
Cặp số (2; 3) không là nghiệm của bất phương trình nào
Cặp số
không là nghiệm của bất phương trình nào sau đây?
Xét đáp án
Thay ta được:
Vậy cặp số không là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Tìm tập xác định
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Tính vectơ theo hai vectơ đã cho
Cho tam giác
hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có:
Tính số đo góc A
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Điền đáp án vào ô trống
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Tìm điểm không thuộc miền nghiệm
Miền nghiệm của bất phương trình
không chứa điểm nào sau đây?
Xét điểm . Ta có:
không thỏa mãn. Do đó
không thuộc miền nghiệm của bất phương trình
.
Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Chọn khẳng định đúng
Xét tính đồng biến, nghịch biến của hàm số
trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?
Ta có :
.
● Với mọi x1, x2 ∈ (−∞;−5) và x1 < x2. Ta có .
Suy ra đồng biến trên (−∞;−5).
● Với mọi x1, x2 ∈ (−5;+∞) và x1 < x2. Ta có .
Suy ra đồng biến trên (−5;+∞).
Tìm câu không phải mệnh đề
Câu nào trong các câu sau không phải là mệnh đề?
Xét đáp án: là một câu khẳng định đúng nên là mệnh đề.
Xét đáp án: là một số vô tỷ nên B là một câu khẳng định sai vậy là mệnh đề.
Xét đáp án: là một câu khẳng định sai vậy là mệnh đề.
Xét đáp án “ có phải là một số hữu tỷ không?”: Đây là câu hỏi nên không phải là mệnh đề.
Chọn đáp án đúng
Cho tập
. Tập nào sau đây bằng tập
?
Vì là tập hợp các phần tử thuộc X mà không thuộc Y
Cách phát biểu nào sau đây đúng
Cách phát biểu nào sau đây dùng để phát biểu mệnh đề: ![]()
không phải là điều kiện cần để có
Chọn đáp án là điều kiện cần để có
Tìm tọa độ trực tâm H
Cho tam giác
có
,
,
. Tìm tọa độ trực tâm
của tam giác
.
Gọi là tọa độ cần tìm.
Ta có:
.
.
Từ và
ta có hệ phương trình
.
Vậy là tọa độ cần tìm.
Tìm m thỏa mãn điều kiện
Cho
. Tìm
để
âm với mọi giá trị
.
Để
thì
.
Giải phương trình
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Xác định vectơ
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó ![]()
Ta có: G là trọng tâm tam giác ABC =>
Chọn cách viết đúng
Cách viết nào sau đây là đúng?
Cách viết đúng là:
Tính độ dài cạnh AB
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Tìm tọa độ điểm A
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó
Giải phương trình
Số nghiệm của phương trình
là:
Điều kiện:
Vậy phương trình đã cho có tất cả 1 nghiệm.
Tìm khẳng định sai
Khẳng định nào về hàm số y = 3x + 5 là sai?
Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên ℝ, suy ra chọn đáp án Hàm số nghịch biến trên ℝ.
Phần không bị gạch chéo là nghiệm của bất phương trình nào?
Phần không bị gạch chéo là nghiệm của bất phương trình nào? (kể cả bờ
)

Đường thẳng có dạng
đi qua hai điểm
và
.
Thay tọa độ hai điểm này vào :
.
Vậy có dạng
.
Thay điểm vào
:
. Suy ra phần không gạch chéo (không chứa
) là nghiệm của bất phương trình
.
Tính giá trị của T
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 − 4mx + m2 − 2m trên đoạn [ − 2; 0] bằng 3. Tính tổng T các phần tử của S.
Parabol có hệ số theo x2 là 4 > 0 nên bề lõm hướng lên. Hoành độ đỉnh .
• Nếu thì xI < − 2 < 0 . Suy ra f(x) đồng biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(−2) = m2 + 6m + 16.
Theo yêu cầu bài toán: m2 + 6m + 16 = 3 (vô nghiệm).
• Nếu thì xI ∈ [0; 2]. Suy ra f(x) đạt giá trị nhỏ nhất tại đỉnh.
Do đó .
Theo yêu cầu bài toán (thỏa mãn − 4 ≤ m ≤ 0).
• Nếu thì xI > 0 > − 2. Suy ra f(x) nghịch biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(0) = m2 − 2m.
Theo yêu cầu bài toán:
Vậy
Tìm m thỏa mãn điều kiện
Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là
Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb
⇔ Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.
Chọn khẳng định đúng
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: