Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Xác định đặc điểm tam giác ABC

    Cho tam giác ABCAB =
c;BC = a;AC = b và các góc của tam giác thỏa mãn biểu thức:

    \left\{ \begin{matrix}\sin\widehat{B}.\sin\widehat{C} = \dfrac{3}{4} \\a^{2} = \dfrac{a^{3} - b^{3} - c^{3}}{a - b - c} \\\end{matrix} ight.. Khi đó tam giác ABC là tam giác gì?

    Ta có:

    a^{2} = \frac{a^{3} - b^{3} - c^{3}}{a -
b - c}

    \Leftrightarrow a^{2}(a - b - c) = a^{3}
- b^{3} - c^{3}

    \Leftrightarrow a^{2}(a + b) = (b +
c)\left( b^{2} - bc + c^{2} ight)

    \Leftrightarrow a^{2} = b^{2} - bc +
c^{2}

    \Leftrightarrow b^{2} + c^{2} - a^{2} =
bc

    \Leftrightarrow \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{1}{2}

    \Leftrightarrow \cos\widehat{A} =
\frac{1}{2}

    \Leftrightarrow \widehat{A} =
\frac{\pi}{3}(*)

    Ta lại có:

    \sin\widehat{B}.sin\widehat{C} =
\frac{3}{4}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) - \cos\left( \widehat{B} + \widehat{C} ight) =
\frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) + \cos\widehat{A} = \frac{3}{2}

    \Leftrightarrow \cos\left( \widehat{B} -
\widehat{C} ight) = 1

    \Leftrightarrow \widehat{B} -
\widehat{C} = 0 \Leftrightarrow \widehat{B} = \widehat{C}

    Vậy tam giác ABC là tam giác đều.

  • Câu 2: Thông hiểu

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 3: Nhận biết

    Chọn kết luận đúng

    Hai vectơ có cùng độ dài và ngược hướng gọi là:

    Theo định nghĩa ta có:

    Hai vectơ có cùng độ dài và ngược hướng gọi là hai vectơ đối nhau.

  • Câu 4: Thông hiểu

    Tính độ dài cạnh BC

    Tam giác ABCAB =
\sqrt{2},\ \ AC = \sqrt{3}\widehat{C} = 45{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{C}

    \Rightarrow \left( \sqrt{2}
ight)^{2} = \left( \sqrt{3}
ight)^{2} + BC^{2} - 2.\sqrt{3}.BC.cos45{^\circ}

    \Rightarrow BC = \frac{\sqrt{6} +
\sqrt{2}}{2}.

  • Câu 5: Vận dụng

    Mệnh đề nào sau đây đúng?

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Với n\mathbb{\in N} thì n(n + 1) là hai số tự nhiên liên tiếp \Rightarrow n(n + 1) là số chẵn\Rightarrow n(n + 1) \vdots
2

    Với n\mathbb{\in N} thì n(n + 1)(n + 2) là ba số tự nhiên liên tiếp \Rightarrow trong 3 số n,n + 1,n + 2 có 1 số chia hết cho 3.

    \Rightarrow n(n + 1)(n + 2) \vdots
3

    \Rightarrow \left\{ \begin{matrix}
n(n + 1)(n + 2) \vdots 3 \\
n(n + 1)(n + 2) \vdots 2 \\
\end{matrix} ight.

    \Rightarrow n(n + 1)(n + 2) \vdots
6.

    Chọn đáp án \forall n,n(n + 1)(n +
2)là số chia hết cho 6.

  • Câu 6: Thông hiểu

    Chọn kết luận đúng

    Cho hình bình hành ABCD, điểm M thoả mãn: \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{AB}. Khi đó M là trung điểm của:

    Ta có \overrightarrow{MA} +
\overrightarrow{MC} = 2\overrightarrow{MI} =
\overrightarrow{AB}.

    Vậy M là trung điểm của AD.

  • Câu 7: Vận dụng cao

    Tính số tiền lãi lớn nhất

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

  • Câu 8: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow m \in \lbrack - 4;0brack
\cup \left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 9: Thông hiểu

    Tìm điều kiện cần và đủ

    Cho A = (2; + \infty), B = (m; + \infty). Điều kiện cần và đủ của m sao cho B là tập con của A

    Hình vẽ minh họa

    Ta có: B \subset A khi và chỉ khi \forall x \in B \Rightarrow x \in A
\Rightarrow m \geq 2.

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Cho \Delta ABC vuông tại AAB =
3, AC = 4. Vectơ \overrightarrow{CB} + \overrightarrow{AB} có độ dài bằng:

    Hình vẽ minh họa:

    Dựng hình bình hành ABCD tâm E.

    Ta có\left| \overrightarrow{CB} +\overrightarrow{AB} \right| = \left| \overrightarrow{DB} \right|= DB =2EB = 2\sqrt{AE^{2} + BE^{2}} = 2\sqrt{13}.

  • Câu 11: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 12: Thông hiểu

    Xác định đẳng thức đúng

    Cho hình vuông ABCD cạnh a. Gọi E là điểm đối xứng của D qua C. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có C là trung điểm của DE nên DE =
2a.

    Khi đó:

    \overrightarrow{AE}.\overrightarrow{AB}
= \left( \overrightarrow{AD} + \overrightarrow{DE}
\right).\overrightarrow{AB} =
\underset{0}{\overset{\overrightarrow{AD}.\overrightarrow{AB}}{︸}} +
\overrightarrow{DE}.\overrightarrow{AB}

    = DE.AB.\cos\left(\overrightarrow{DE},\overrightarrow{AB} \right) = DE.AB.\cos0^{0} =2a^{2}.

  • Câu 13: Thông hiểu

    Tính khoảng cách AB

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm C mà từ đó có thể nhìn được AB dưới một góc 56^{0}16'. Biết CA = 200m;CB = 180m. Khoảng cách AB bằng bao nhiêu?

    Ta có:

    AB^{2} = CA^{2} + CB^{2} -2CB.CA.\cos\widehat{C}

    = 200^{2} + 180^{2} -2.200.180.\cos56^{0}16' \approx 32416

    \Rightarrow AB = 180m

  • Câu 14: Thông hiểu

    Tìm tọa độ điểm

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 15: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình bình hành ABCD, gọi O là giao điểm hai đường chéo AC BD.

    a) \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}. Đúng||Sai

    b) \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}. Sai||Đúng

    c) Đặt \overrightarrow{a} =
\overrightarrow{DA}, \overrightarrow{b} = \overrightarrow{DC}. Khi đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} - \sqrt{3}
\right), biết rằng vectơ \overrightarrow{a}\overrightarrow{b} tạo với nhau góc 60{^\circ}\left| \overrightarrow{a} \right| = 6;\left|
\overrightarrow{b} \right| = 3. Sai||Đúng

    d) Tập hợp điểm Msao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0}; điểm M đó thỏa mãn \left| \overrightarrow{DM}
\right| = \left| 2\overrightarrow{DB} \right|. Đúng||Sai

    Đáp án là:

    Cho hình bình hành ABCD, gọi O là giao điểm hai đường chéo AC BD.

    a) \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}. Đúng||Sai

    b) \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}. Sai||Đúng

    c) Đặt \overrightarrow{a} =
\overrightarrow{DA}, \overrightarrow{b} = \overrightarrow{DC}. Khi đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} - \sqrt{3}
\right), biết rằng vectơ \overrightarrow{a}\overrightarrow{b} tạo với nhau góc 60{^\circ}\left| \overrightarrow{a} \right| = 6;\left|
\overrightarrow{b} \right| = 3. Sai||Đúng

    d) Tập hợp điểm Msao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0}; điểm M đó thỏa mãn \left| \overrightarrow{DM}
\right| = \left| 2\overrightarrow{DB} \right|. Đúng||Sai

    a) Đũng

    Theo quy tắc hiệu ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}.

    b) Sai

    Theo quy tắc hiệu ta có \overrightarrow{OB} - \overrightarrow{OC} =
\overrightarrow{OD} - \overrightarrow{OA} \Leftrightarrow
\overrightarrow{CB} = \overrightarrow{AD}.

    Đẳng thức này sai vì \overrightarrow{CB}\overrightarrow{AD} là hai véc tơ đối nhau.

    c) Sai

    Ta có: AC^{2} = DA^{2} + DC^{2} -
2.DA.DC.cos60{^\circ} = 6^{2} + 3^{2} - 2.6.3.\frac{1}{2} =
27.

    DO^{2} = \frac{AD^{2} + DC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{6^{2} + 3^{2}}{2} - \frac{27}{4} =
\frac{63}{4}.

    \left| \overrightarrow{a} +
\overrightarrow{b} \right| = \left| \overrightarrow{DA} +
\overrightarrow{DC} \right| = \left| \overrightarrow{DB} \right| = 2DO =
2\sqrt{\frac{63}{4}} = 3\sqrt{7}.

    \left| \overrightarrow{a} -
\overrightarrow{b} \right| = \left| \overrightarrow{DA} -
\overrightarrow{DC} \right| = \left| \overrightarrow{CA} \right| = CA =
3\sqrt{3}.

    Do đó: \left| \overrightarrow{a} +
\overrightarrow{b} \right| + \left| \overrightarrow{a} -
\overrightarrow{b} \right| = 3\left( \sqrt{7} + \sqrt{3}
\right).

    d) Đúng

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} - 4\overrightarrow{MD} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{DA} +
\overrightarrow{DB} + \overrightarrow{DC} + \overrightarrow{DM} =
\overrightarrow{0}

    \overrightarrow{DA} +
\overrightarrow{DC} = \overrightarrow{DB}

    Vậy (1) \Leftrightarrow
2\overrightarrow{DB} + \overrightarrow{DM} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{DM} = -
2\overrightarrow{DB} \Rightarrow \left| \overrightarrow{DM} \right| =
\left| 2\overrightarrow{DB} \right|

  • Câu 16: Thông hiểu

    Tim số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Cho hình bình hành ABCD,với giao điểm hai đường chéo là I. Khi đó:

    Ta có: \overrightarrow{AB} +
\overrightarrow{IA} = \overrightarrow{IB} , \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC} , \overrightarrow{AB} + \overrightarrow{CD} =
\overrightarrow{0} .

  • Câu 18: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 19: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.

    Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).

    Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Gọi C là trung điểm của đoạn AB. Hãy chọn khẳng định đúng trong các khẳng định sau:

    Ta có C là trung điểm của đoạn \overrightarrow{AB}\overrightarrow{AC} cùng hướng.

  • Câu 21: Nhận biết

    Tìm câu sai

    Cho \alpha\beta là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?

    Mối liên hệ hai cung bù nhau.

  • Câu 22: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Cho các vectơ \overrightarrow{a} = (4; - 2),\overrightarrow{b} =
( - 1; - 3),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =m\overrightarrow{a} + n\overrightarrow{c} \Leftrightarrow \left\{\begin{matrix}- 1 = 4m + 2n \\- 3 = - 2m + 5n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{1}{24} \ = - \frac{7}{12} \\\end{matrix} ight.. Vậy \overrightarrow{b} =
\frac{1}{24}\overrightarrow{a} -
\frac{7}{12}\overrightarrow{c}.

  • Câu 23: Nhận biết

    Xác định đẳng thức đúng

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \Rightarrow \overrightarrow{AM}=\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Cho hai tập hợp A = \lbrack -
2;3\rbrack,B = (m;m + 6). Điều kiện để A \subset B là:

    Biểu diễn tập số trên trục số:

    Điều kiện để A \subset Bm < - 2 < 3 < m + 6

    \Leftrightarrow \left\{ \begin{matrix}
m < - 2 \\
m + 6 > 3 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m < - 2 \\
m > - 3 \\
\end{matrix} \right.

    \Leftrightarrow - 3 < m < -
2.

  • Câu 25: Vận dụng

    Tìm tập hợp điểm M

    Cho ba điểm A,B,C phân biệt. Tập hợp những điểm M\overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} là :

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} \Leftrightarrow \overrightarrow{CM}.\overrightarrow{CB} -
\overrightarrow{CA}.\overrightarrow{CB} = 0 \Leftrightarrow \left( \overrightarrow{CM} -
\overrightarrow{CA} ight).\overrightarrow{CB} = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0.

    Tập hợp điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 26: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Cho bốn điểm A,\ B,\ C,\ Dphân biệt. Khi đó vectơ \overrightarrow{u} =
\overrightarrow{AD} - \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{DB} là:

    Ta có:

    \overrightarrow{u} = \overrightarrow{AD}
- \overrightarrow{CD} + \overrightarrow{CB} -
\overrightarrow{DB}

    = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{CB} + \overrightarrow{BD} =
\overrightarrow{AC} + \overrightarrow{CD} =
\overrightarrow{AD}.

  • Câu 28: Nhận biết

    Tính độ dài bán kính đường tròn ngoại tiếp

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 29: Nhận biết

    Tìm điểm thuộc miền nghiệm của hệ

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 30: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 31: Thông hiểu

    Xác định số khẳng định đúnga

    Cho tam giác đều ABC cạnh a, với các đường cao AH,BK; vẽ\
HI\bot AC. Cho các khẳng định sau:

    a) \overrightarrow{BA}.\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BH}.

    b) \overrightarrow{CB}.\overrightarrow{CA} =
4\overrightarrow{CB}.\overrightarrow{CI}.

    c) \left( \overrightarrow{AC} -
\overrightarrow{AB} \right).\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BC}.

    Có bao nhiêu câu nào sau đây đúng?

    Khẳng định a):

    \overrightarrow{BC} =
2\overrightarrow{BH} \Rightarrow \overrightarrow{BA}.\overrightarrow{BC}
= 2\overrightarrow{BA}.\overrightarrow{BH} nên đẳng thức ở phương án A là đúng.

    Khẳng định b):

    \overrightarrow{CA} =
4\overrightarrow{CI} \Rightarrow \overrightarrow{CB}.\overrightarrow{CA}
= 4\overrightarrow{CB}.\overrightarrow{CI} nên đẳng thức ở phương án B là đúng.

    Khẳng định c):

    \left. \ \begin{matrix}
\left( \overrightarrow{AC} - \overrightarrow{AB}
\right).\overrightarrow{BC} = \overrightarrow{BC}.\overrightarrow{BC} =
a^{2} \\
2\overrightarrow{BA}.\overrightarrow{BC} = 2.a.a.\frac{1}{2} = a^{2}
\end{matrix} \right\}\Rightarrow \left( \overrightarrow{AC} -
\overrightarrow{AB} \right).\overrightarrow{BC} =
2\overrightarrow{BA}.\overrightarrow{BC} nên đẳng đúng

    Vậy cả 3 khẳng định đều đúng.

  • Câu 32: Vận dụng

    Đẳng thức nào sau đây sai?

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Gọi E,\ \ F lần lượt là trung điểm của AB,\ \ BC. Đẳng thức nào sau đây sai?

    Ta có OF,\ \ OE lần lượt là đường trung bình của tam giác \Delta
BCD\Delta ABC.

    \Rightarrow BEOF là hình bình hành.

    \overrightarrow{BE} +
\overrightarrow{BF} = \overrightarrow{BO} \Rightarrow
\overrightarrow{BE} + \overrightarrow{BF} - \overrightarrow{DO} =
\overrightarrow{BO} - \overrightarrow{DO} = \overrightarrow{OD} -
\overrightarrow{OB} = \overrightarrow{BD}.

  • Câu 33: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 34: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình 2x - \sqrt{2}y + \sqrt{2} - 2 \leq 0 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 1).2.1 - \sqrt{2}.1 + \sqrt{2} - 2 = 0 \leq
0 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \ 1).

  • Câu 35: Nhận biết

    Chọn phương án thích hợp

    Phủ định của mệnh đề: “Có ít nhất một số vô tỷ là số thập phân vô hạn tuần hoàn” là mệnh đề nào sau đây:

    Phủ định của “có ít nhất” là “mọi”

    Phủ định của “tuần hoàn” là “không tuần hoàn”.

    Vậy đáp án cần tìm là: “Mọi số vô tỉ đều là số thập phân vô hạn không tuần hoàn”.

  • Câu 36: Nhận biết

    Chọn khẳng định sai

    Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (−1;1)(2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−1;1)(2;3).

    Trên khoảng (1;2)(3;5) đồ thị hàm số đi xuống từ trái sang phải

    \overset{}{ightarrow} Hàm số nghịch biến trên khoảng (1;2)(3;5).

  • Câu 37: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x)<0,\forall x\in R\Leftrightarrow(m+2)^2+8(m-4)<0

    \Leftrightarrow m^2+12m-28<0\Leftrightarrow-14<m<2.

  • Câu 38: Nhận biết

    Tính tích vô hướng

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 39: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:

    f(x) > 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 7m - 11 <
0\  \Leftrightarrow - 1 < x < \frac{11}{4}.

  • Câu 40: Thông hiểu

    Tính giá trị biểu thức S

    Cho hàm số bậc hai y = ax^{2} + bx + c;(a eq 0) có đỉnh I( - 1;4) và đi qua điểm M( - 2;5). Xác định giá trị biểu thức S = a + b + c?

    Parabol có đỉnh I( - 1;4)

    \Leftrightarrow \left\{ \begin{matrix}- \dfrac{b}{2a} = - 1 \\4 = a.( - 1)^{2} + b.( - 1) + c \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a - b = 0 \\a - b + c = 4 \\\end{matrix} ight.(*)

    Parabol đi qua điểm M( - 2;5) suy ra

    5 = a( - 2)^{2} + b.( - 2) +
c

    \Leftrightarrow 4a - 2b + c =
5(**)

    Từ (*) và (**) ta có hệ phương trình

    \left\{ \begin{matrix}
2a - b = 0 \\
a - b + c = 4 \\
4a - 2b + c = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 5 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = 1 + 2 + 5 =
8

  • Câu 41: Vận dụng

    Tìm bất phương trình thỏa mãn

    Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?

    Đường thẳng đi qua hai điểm A\left(
\frac{3}{2};0 ight)B(0; -
3) nên có phương trình 2x - y =
3.

    Mặt khác, cặp số (0;0) không thỏa mãn bất phương trình 2x - y >
3 nên phần tô đậm ở hình trên biểu diễn miền nghiệm của bất phương trình 2x - y > 3.

  • Câu 42: Nhận biết

    Xác định giao của hai tập hợp

    Cho A = ( - \infty;5\rbrack, B = (0; + \infty). TìmA \cap B.

    Ta có: A \cap B =
(0;5\rbrack.

  • Câu 43: Nhận biết

    Tính giá trị lượng giác

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 44: Nhận biết

    Chọn khẳng định đúng

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 45: Nhận biết

    Xác định tọa độ vectơ

    Cho \overrightarrow{a} =
(x;2),\overrightarrow{b} = ( - 5;1),\overrightarrow{c} = (x;7). Vectơ \overrightarrow{c} =
2\overrightarrow{a} + 3\overrightarrow{b} nếu:

    Ta có: \overrightarrow{c} =
2\overrightarrow{a} + 3\overrightarrow{b} \Leftrightarrow \left\{
\begin{matrix}
x = 2x + 3.( - 5) \\
7 = 2.2 + 3.1
\end{matrix} \right.\  \Leftrightarrow x = 15.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo