Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính cosin góc giữa hai vectơ

    Cho hình vuông ABCD. Tính \cos\left( \overrightarrow{AC},\overrightarrow{BA}
\right).

    Hình vẽ minh họa:

    Vẽ \overrightarrow{AE} =
\overrightarrow{BA}.

    Khi đó \cos\left(\overrightarrow{AC},\overrightarrow{BA} \right) = \cos\left(\overrightarrow{AC},\overrightarrow{AE} \right)= \cos\widehat{CAE} =\cos135^{0} = - \frac{\sqrt{2}}{2}.

  • Câu 2: Thông hiểu

    Chọn đẳng thức đúng

    Cho 4 điểmA,\ B,\ C,\ D. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AB} -
\overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{DB} +
\overrightarrow{CD} = \overrightarrow{AD} +
\overrightarrow{CB}.

  • Câu 3: Nhận biết

    Tìm bất phương trình bậc nhất hai ẩn

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 4: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 5: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Gọi AN,\ CM là các đường trung tuyến của tam giácABCG là trọng tâm.

    Xét tính đúng sai của các mệnh đề sau:

    a) \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC}\ . Sai||Đúng

    b) \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{GC}\ . Sai||Đúng

    c) \overrightarrow{MN} =
\frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA})\ . Đúng||Sai

    d) \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Đúng||Sai

    Đáp án là:

    Gọi AN,\ CM là các đường trung tuyến của tam giácABCG là trọng tâm.

    Xét tính đúng sai của các mệnh đề sau:

    a) \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC}\ . Sai||Đúng

    b) \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{GC}\ . Sai||Đúng

    c) \overrightarrow{MN} =
\frac{1}{2}(\overrightarrow{BC} - \overrightarrow{BA})\ . Đúng||Sai

    d) \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Đúng||Sai

    Hình vẽ minh họa

    a) Theo tính chất trung điểm đoạn thẳng BC ta có \overrightarrow{AN} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) nên mệnh đề sai.

    b) Vì G là trọng tâm tam giác ABC nên \overrightarrow{CM} =
\frac{3}{2}\overrightarrow{CG} suy ra mệnh đề sai.

    c) Do M, N lần lượt là trung điểm của cạnh ABBC nên ta có:

    \overrightarrow{MN} =
\frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\left( \overrightarrow{BC} -
\overrightarrow{BA} \right) hay mệnh đề đúng

    d) Ta có:

    \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} \right) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =
\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}. Vậy mệnh đề d) đúng

  • Câu 6: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 7: Nhận biết

    Tìm điểm thuộc miền nghiệm của hệ

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 8: Thông hiểu

    Chọn khẳng định đúng

    Cộng các vectơ có cùng độ dài 5 và cùng giá. Khẳng định nào sau đây đúng?

    Cộng số chẵn các vectơ ngược hướng cùng độ dài ta được vectơ \overrightarrow{\mathbf{0}}.

  • Câu 9: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0,    ∀x ∈ ℝ?

    f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.

  • Câu 10: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 11: Nhận biết

    Chọn đáp án đúng

    Cho tứ giác lồi ABCDAD = 6cm. Đặt \overrightarrow{v} = \overrightarrow{AB} -
\overrightarrow{DC} - \overrightarrow{CB}. Tính \overrightarrow{v}.\overrightarrow{AD} ?

    Ta có:

    \overrightarrow{v} = \overrightarrow{AB}- \overrightarrow{DC} - \overrightarrow{CB}= \overrightarrow{AB} +\overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{AD}

    Suy ra \overrightarrow{v}.\overrightarrow{AD} = AD^{2} =
36cm^{2}.

  • Câu 12: Thông hiểu

    Tam thức bậc hai dương khi nào

    Tam thức bậc hai f(x)=−x^{2}+5x−6 nhận giá trị dương khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phươn trình f(x)=0 có hai nghiệm phân biệt x=2;x=3.

    Do đó f(x)>0 \Leftrightarrow x \in (2;3).

  • Câu 13: Vận dụng cao

    Tính số đo góc C

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \sqrt[2017]{\sin\widehat{C}}

    Giả sử AB = c;BC = a;AC = b. Tính số đo góc \widehat{C}?

    Ta có:

    \sin\widehat{C} \in \lbrack - 1;1brack
\Rightarrow sin^{2017}\widehat{C} \geq sin^{2}\widehat{C}

    \Rightarrow sin^{2}\widehat{A} +
sin^{2}\widehat{B} \geq sin^{2}\widehat{C}

    \Rightarrow 4R^{2}.\left\lbrack
sin^{2}\widehat{A} + sin^{2}\widehat{B} ightbrack \geq
4R^{2}.sin^{2}\widehat{C}

    \Rightarrow a^{2} + b^{2} \geq
c^{2}

    \Rightarrow a^{2} + b^{2} - c^{2} \geq
0

    Theo định lí cosin ta có:

    \Rightarrow \cos\widehat{C} =
\frac{a^{2} + b^{2} - c^{2}}{2ab} \geq 0

    Ta thấy

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \frac{1 - \cos2\widehat{A}}{2} + \frac{1 -\cos2\widehat{B}}{2}

    = 1 - \frac{\cos2\widehat{A} +\cos2\widehat{B}}{2}

    = 1 - \cos\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B}ight)

    = 1 - \cos\widehat{C}.\cos\left(\widehat{A} - \widehat{B} ight) \geq 1

    Mặt khác \sqrt[2017]{\sin\widehat{C}}\leq \sqrt[2017]{1} = 1

    Do đó: sin^{2}\widehat{A} +
sin^{2}\widehat{B} = \sqrt[2017]{\sin\widehat{C}} khi \left\{ \begin{matrix}\cos\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = 0 \\\sin\widehat{C} = 1 \\\end{matrix} ight.

    \Rightarrow \widehat{C} =\dfrac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại \widehat{C}.

  • Câu 14: Vận dụng

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình: 3x + 2(y + 3) \geq 4(x + 1) - y + 3 là nửa mặt phẳng chứa điểm:

    Ta có 3x + 2(y + 3) \geq 4(x + 1) - y +3\  \Leftrightarrow \  - x + 3y - 1 \geq 0.

    - 2 + 3.1 - 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (2;1).

  • Câu 15: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 16: Vận dụng

    Tìm khẳng định đúng

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA} = \overrightarrow{MB} +
\overrightarrow{MC}. Khẳng định nào sau đây đúng ?

    Gọi I,\ \ G lần lượt là trung điểm BC và trọng tâm tam giác ABC.

    I là trung điểm BC nên \overrightarrow{MB} + \overrightarrow{MC} = 2\
\overrightarrow{MI}.

    Theo bài ra, ta có \overrightarrow{MA} =
\overrightarrow{MB} + \overrightarrow{MC} suy ra \overrightarrow{MA} = 2\overrightarrow{MI}
\Rightarrow A,\ \ M,\ \ I thẳng hàng

    Mặt khác G là trọng tâm của tam giác ABC \Rightarrow \ G \in
AI.

    Do đó, ba điểm A,\ \ M,\ \ G thẳng hàng.

  • Câu 17: Vận dụng

    Mệnh đề nào sau đây đúng?

    Biết A là mệnh đề sai, còn B là mệnh đề đúng. Mệnh đề nào sau đây đúng?

    B đúng, A sai nên B \Rightarrow
A, B \Leftrightarrow A là mệnh đề sai.

    \overline{A} đúng, \overline{B} sai nên \overline{A} \Rightarrow \overline{B} là mệnh đề sai do đó \overline{A}
\Leftrightarrow \overline{B} là mệnh đề sai.

    Chọn đáp án B \Rightarrow
\overline{A}.

  • Câu 18: Thông hiểu

    Chọn khẳng định đúng

    Trong hệ tọa độ Oxy, cho tọa độ bốn điểm A(1;2),B( - 1;3), C( - 2; - 1),D(0; - 2). Chọn khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = ( - 1; - 4) \\
\overrightarrow{BC} = ( - 1; - 4) \\
\end{matrix} ight.. Vậy ABCD là hình bình hành.

  • Câu 19: Nhận biết

    Tìm điểm không thuộc đồ thị hàm số

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 20: Thông hiểu

    Xác định giá trị tham số a

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

  • Câu 21: Vận dụng

    Tính độ dài vectơ

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}.Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Ta có \left| \overrightarrow{a} +\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +\overrightarrow{b} ight)^{2}}= \sqrt{{\overrightarrow{a}}^{2} +{\overrightarrow{b}}^{2} + 2\overrightarrow{a}.\overrightarrow{b}}=\sqrt{\left| \overrightarrow{a} ight|^{2} + \left| \overrightarrow{b}ight|^{2} + 2\left| \overrightarrow{a} ight|\left|\overrightarrow{b} ight|\ \ \cos\left(\overrightarrow{a},\overrightarrow{b} ight)}= \sqrt{21}.

  • Câu 22: Vận dụng cao

    Tính số tiền lãi lớn nhất

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

  • Câu 23: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 24: Vận dụng cao

    Tính cường độ lực

    Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10  N. Khi đó lực tác động vào bức tường tại hai điểm BC có cường độ lần lượt là:

    Cường độ lực tại C bằng cường độ lực tại A và bằng 10  N.

    Cường độ lực tại B bằng 10\sqrt{2}\ \ N (định lý Pyago cho tam giác vuông cân).

  • Câu 25: Thông hiểu

    Tìm tính chất đặc trưng của tập hợp

    Tính chất đặc trưng của tập hợp X =
\left\{ \frac{1}{2};\frac{1}{6};\frac{1}{12};\frac{1}{20};....
\right\}.

    Ta có: \left\{ \begin{matrix}
2 = 1(1 + 1) \\
6 = 2(2 + 1) \\
12 = 3(3 + 1) \\
20 = 4(4 + 1) \\
.... \\
\end{matrix} \right.\  \Rightarrow x = n(n + 1);\left( n \in
\mathbb{N}^{*} \right)

    Vậy đáp án cần tìm là: \left\{
x\mathbb{\in Q}\left| x = \frac{1}{n(n + 1)};n\mathbb{\in N}*
\right.\  \right\}.

  • Câu 26: Nhận biết

    Số nghiệm của phương trình là

    Số nghiệm của phương trình x - \sqrt{3x + 4} = 2 là:

    x - \sqrt{3x + 4} = 2 \Leftrightarrow\sqrt{3x + 4} = x - 2\Leftrightarrow \left\{ \begin{matrix}x - 2 \geq 0 \\3x + 4 = (x - 2)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\3x + 4 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} - 7x = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\\left\lbrack \begin{matrix}x = 0 \\x = 7 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 7.

    Vậy phương trình có 1 nghiệm.

  • Câu 27: Thông hiểu

    Tìm hàm số bậc hai thỏa mãn

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 28: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].

  • Câu 29: Nhận biết

    Chọn khẳng định đúng

    Cho hình vuông ABCD, khẳng định nào sau đây đúng?

    Ta có ABCD là hình vuông. Suy ra: \left| \overrightarrow{AB} \right| =
\left| \overrightarrow{BC} \right|.

    Vậy khẳng định đúng là: \left|
\overrightarrow{AB} \right| = \left| \overrightarrow{BC}
\right|.

  • Câu 30: Nhận biết

    Khẳng định nào sau đây đúng?

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 31: Vận dụng

    Tính tổng hợp lực

    Cho hai lực \overrightarrow{F1}\overrightarrow{F2} cùng tác động vào một vật đứng tại điểm O, biết hai lực \overrightarrow{F1}\overrightarrow{F2} đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

    Hình vẽ minh họa

    Tính tổng hợp lực

    Theo quy tắc hình bình hành ta có:

    \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {{F_{hl}}}

    \begin{matrix}   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {\left| {\overrightarrow {{F_1}} } ight|^2} + {\left| {\overrightarrow {{F_2}} } ight|^2} + 2\left| {\overrightarrow {{F_1}} } ight|.\left| {\overrightarrow {{F_2}} } ight|.\cos {60^0} \hfill \\   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {50^2} + {50^2} + 2.50.50.\dfrac{1}{2} = 7500 \hfill \\   \Rightarrow \left| {\overrightarrow {{F_{hl}}} } ight| = 50\sqrt 3  \hfill \\ \end{matrix}

  • Câu 32: Vận dụng

    Tìm tọa độ điểm A

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 33: Thông hiểu

    Xác định đẳng thức sai

    Cho các điểm phân biệt A,\ B,\ C,\ D,\ E,\
F. Đẳng thức nào sau đây sai?

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{AF} +
\overrightarrow{ED} + \overrightarrow{BC}

    \Leftrightarrow \overrightarrow{AB} -
\overrightarrow{AF} + \overrightarrow{CD} - \overrightarrow{BC} +
\overrightarrow{EF} - \overrightarrow{ED} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{FB} +
\overrightarrow{DF} + \overrightarrow{CD} + \overrightarrow{CB} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{DB} +
\overrightarrow{CD} + \overrightarrow{CB} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{CB} +
\overrightarrow{CB} = \overrightarrow{0} (vô lý).

  • Câu 34: Thông hiểu

    Tính khoảng cách AB

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm Cmà từ đó có thể nhìn được ABdưới một góc 56^{0}16'. Biết CA = 200\ m, CB = 180\ m. Khoảng cách AB bằng bao nhiêu?

    Ta có:

    AB^{2} = CA^{2} + CB^{2} -2CB.CA.\cos C

    = 200^{2} + 180^{2} -2.200.180.\cos56^{0}16' \simeq 32416

    \Rightarrow AB \simeq 180.

  • Câu 35: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 4,c = 5,B = 150^{0}. Diện tích của tam giác là:

    Ta có:

    S_{\Delta ABC} =\frac{1}{2}a.c.\sin B = \frac{1}{2}.4.5.\sin150^{0} = 5.

  • Câu 36: Thông hiểu

    Tính diện tích mảnh đất

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 37: Nhận biết

    Chọn đáp án đúng

    Trong các vecto dưới đây, vecto nào cùng phương với vecto \overrightarrow{u} = (3; -
2)?

    Nhận thấy \frac{3}{- 9} = \frac{-
2}{6} nên \overrightarrow{d} = ( -
9;6) cùng phương với \overrightarrow{u} = (3; - 2).

  • Câu 38: Nhận biết

    Mệnh đề nào sau đây đúng?

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 39: Thông hiểu

    Tìm khẳng định sai

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} \right). Khẳng định nào sau đây sai?

    Phương án \overrightarrow{AB} = ( - 3; -
2), \overrightarrow{AC} = \left( 3;
- \frac{9}{2} \right): \overrightarrow{AB} = ( - 3; - 2), nên loại.

    Phương án \overrightarrow{AB}.\overrightarrow{AC} =
0: \overrightarrow{AB}.\overrightarrow{AC} =
0 nên loại.

    Phương án \left| \overrightarrow{AB}
\right| = \sqrt{13}: \left|
\overrightarrow{AB} \right| = \sqrt{13} nên loại.

    Phương án \left| \overrightarrow{BC}
\right| = \frac{\sqrt{13}}{2}: Ta có \overrightarrow{BC} = \left( 6; - \frac{5}{2}
\right) suy ra BC = \sqrt{6^{2} +
\left( \frac{5}{2} \right)^{2}} = \frac{13}{2}nên chọn.

  • Câu 40: Nhận biết

    Chọn đáp án đúng

    Cho tập X = \left\{ 2;4;6;9 \right\},Y =
\left\{ 1;2;3;4 \right\}. Tập nào sau đây bằng tập X\backslash Y?

    X\backslash Y là tập hợp các phần tử thuộc X mà không thuộc Y

  • Câu 41: Nhận biết

    Xác định hệ thức sai

    Hai góc nhọn \alpha\beta phụ nhau, hệ thức nào sau đây là sai?

    Ta có:

    \cos\alpha = \cos\left( 90^{0} - \beta
\right) = \sin\beta

    Vậy hệ thức sai là: \cos\alpha = -
\sin\beta.

  • Câu 42: Nhận biết

    Chọn phương án thích hợp

    Cho đoạn thẳng AB và điểm I thỏa mãn \overrightarrow{IB} +3\overrightarrow{IA} =\overrightarrow{0}. Hình nào sau đây mô tả đúng giả thiết này?

    Ta có: \overrightarrow{IB} +
3\overrightarrow{IA} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{IB} = - 3\overrightarrow{IA}.

    Do đó IB = 3.IA;\overrightarrow{IA}\overrightarrow{IB} ngược hướng.

    Chọn Hình 4.

  • Câu 43: Thông hiểu

    Tìm tập nghiệm S

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 44: Nhận biết

    Tìm mệnh đề chứa biến.

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 45: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

    Phương trình f(x) + m - 2018 =
0\overset{}{\leftrightarrow}f(x) = 2018 - m. Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Chân trời sáng tạo Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo