Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 10 Bài 14: Các số đặc trưng đo độ phân tán KNTT

Giải Toán 10 Bài 14: Các số đặc trưng đo độ phân tán KNTT được VnDoc.com tổng hợp và xin gửi tới bạn đọc. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé.

Bài 5.11 trang 88 SGK Toán 10 KNTT

Mỗi khẳng định sau đúng hay sai?

(1) Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch chuẩn càng lớn.

(2) Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin của các giá trị còn lại.

(3) Khoảng tứ phân vị có sử dụng thông tin của giá trị lớn nhất, giá trị bé nhất.

(4) Khoảng tứ phân vị chính là khoảng biến thiên của nửa dưới mẫu số liệu đã sắp xếp.

(5) Các số đo độ phân tán đều không âm.

Gợi ý đáp án

Khẳng định (1): Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch của mỗi giá trị so với giá trị trung bình càng nhỏ (tức là {x_i} - \overline x\({x_i} - \overline x\)càng nhỏ, với i = 1;2;...;n), dẫn đến độ lệch chuẩn càng nhỏ.

\Rightarrow\(\Rightarrow\)(1) Sai

Khẳng định (2): Khoảng biến thiên R bằng hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất nên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất

\Rightarrow\(\Rightarrow\) (2) Đúng.

Khẳng định (3): Khoảng tứ phân vị {\Delta _Q} = {Q_3} - {Q_1},\({\Delta _Q} = {Q_3} - {Q_1},\) các giá trị {Q_1},{Q_3}\({Q_1},{Q_3}\) không bị ảnh hưởng bởi giá trị của giá trị lớn nhất và giá trị nhỏ nhất (với n>4)

\Rightarrow\(\Rightarrow\) Sai

Khẳng định (4): Khoảng tứ phân vị chính là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp

\Rightarrow\(\Rightarrow\) Sai.

Khẳng định (5): Các số đo độ phân tán là

Khoảng biến thiên R=Số lớn nhất – Số nhỏ nhất > 0

Trước khi tính khoảng tứ phân vị thì mẫu số liệu được sắp xếp theo thứ tự không giảm

\Rightarrow {Q_3} > {Q_1} => {\Delta _Q} = {Q_3} - {Q_1} > 0\(\Rightarrow {Q_3} > {Q_1} => {\Delta _Q} = {Q_3} - {Q_1} > 0\)

Phương sai {s^2} = \frac{{{{\left( {{x_1} - \overline x} \right)}^2} + {{\left( {{x_2} - \overline x} \right)}^2} + ... + {{\left( {{x_n} - \overline x} \right)}^2}}}{n} > 0\({s^2} = \frac{{{{\left( {{x_1} - \overline x} \right)}^2} + {{\left( {{x_2} - \overline x} \right)}^2} + ... + {{\left( {{x_n} - \overline x} \right)}^2}}}{n} > 0\)

Độ lệch chuẩn: s = \sqrt {{s^2}} > 0\(s = \sqrt {{s^2}} > 0\)

\Rightarrow\(\Rightarrow\)Các số đo độ phân tán đều không âm

\Rightarrow\(\Rightarrow\) (5) Đúng.

Bài 5.12 trang 88 SGK Toán 10 KNTT

Cho hai biểu đồ chấm điểm biểu diễn hai mẫu số liệu A, B như sau:

Giải Toán 10 Bài 14 KNTT

Không tính toán, hãy cho biết:

a) Hai mẫu số liệu này có cùng khoảng biến thiên và số trung bình không?

b) Mẫu số liệu nào có phương sai lớn hơn?

Gợi ý đáp án

a) Cả 2 mẫu đều có n=15.

Ta có cả 2 mẫu đều có giá trị nhỏ nhất là 3, giá trị lớn nhất là 9

Do đó cả 2 mẫu cùng khoảng biến thiên.

Cả 2 biểu đồ này có dạng đối xứng nên giá trị trung bình của hai mẫu A và B bằng nhau.

b) Từ biểu đồ ta thấy, mẫu A có các số liệu đồng đều và ổn định hơn mẫu B nên phương sai của mẫu A nhỏ hơn mẫu B.

Bài 5.13 trang 88 SGK Toán 10 KNTT

Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán (khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn) sẽ thay đổi như thế nào nếu:

a) Nhân mỗi giá trị của mẫu số liệu với 2.

b) Cộng mỗi giá trị của mẫu số liệu với 2.

Gợi ý đáp án

n = 10

Giả sử sau khi sắp xếp 10 số dương theo thứ tự không giảm thì được:

Giải Toán 10 Bài 14 KNTT

=> Trung vị là giá trị trung bình của số thứ 5 và thứ 6.

=> {Q_1}\({Q_1}\) là số thứ 3 và {Q_3}\({Q_3}\) là số thứ 8.

a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì:

+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần

=> R tăng 2 lần

+ {Q_1}\({Q_1}\){Q_3}\({Q_3}\) tăng 2 lần

=> Khoảng tứ phân vị {\Delta _Q} = {Q_3} - {Q_1}\({\Delta _Q} = {Q_3} - {Q_1}\) tăng 2 lần.

+ Giá trị trung bình tăng 2 lần

=> Độ lệch của mỗi giá trị so với giá trị trung bình \left| {{x_i} - \overline x} \right|\(\left| {{x_i} - \overline x} \right|\) cũng tăng 2 lần

=> {\left( {{x_i} - \overline x} \right)^2}\({\left( {{x_i} - \overline x} \right)^2}\) tăng 4 lần

=> Phương sai tăng 4 lần

=> Độ lệch chuẩn tăng 2 lần.

Vậy R tăng 2 lần, khoảng tứ phân vị tăng 2 lần và độ lệch chuẩn tăng 2 lần.

b) Cộng mỗi giá trị của mẫu số liệu với 2 thì

+ Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị

=> R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ {Q_1}\({Q_1}\){Q_3}\({Q_3}\) tăng 2 đơn vị

=> Khoảng tứ phân vị {\Delta _Q} = {Q_3} - {Q_1}\({\Delta _Q} = {Q_3} - {Q_1}\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ Giá trị trung bình tăng 2 đơn vị

=> Độ lệch của mỗi giá trị so với giá trị trung bình \left| {{x_i} - \overline x} \right|\(\left| {{x_i} - \overline x} \right|\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

=> {\left( {{x_i} - \overline x} \right)^2}\(=> {\left( {{x_i} - \overline x} \right)^2}\) không đổi

=> Phương sai không đổi.

=> Độ lệch chuẩn không đổi.

Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.

Bài 5.14 trang 88 SGK Toán 10 KNTT

Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:

Giá trị nhỏ nhất bằng 2,5;{Q_1} = 36, {Q_2} = 60,{Q_3} = 100\(2,5;{Q_1} = 36, {Q_2} = 60,{Q_3} = 100\); giá trị lớn nhất bằng 205.

a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?

b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này.

c) Tìm khoảng tứ phân vị của mẫu số liệu.

Gợi ý đáp án

a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là tỉ lệ thành phố có thuế thuốc lá lớn hơn {Q_1}\({Q_1}\)

=> Có 75%

b) Ta thấy từ giá trị nhỏ nhất đến {Q_2}\({Q_2}\) có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này

=> Ta chọn giá trị thứ nhất là 2,5 và 36.

c) Khoảng tứ phân vị {\Delta _Q} = {Q_3} - {Q_1} = 100 - 36 = 64\({\Delta _Q} = {Q_3} - {Q_1} = 100 - 36 = 64\)

Bài 5.15 trang 88 SGK Toán 10 KNTT

Mẫu số liệu sau đây cho biết cân nặng của 10 trẻ sơ sinh (đơn vị kg):

2,977 3,155 3,920 3,412 4,236

2,593 3,270 3,813 4,042 3,387

Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.

Gợi ý đáp án

Sắp xếp theo thứ tự không giảm.

2,593 2,977 3,155 3,270 3,387 3,412 3,813 3,920 4,042 4,236

Khoảng biến thiên R = 4,236 - 2,593 = 1,643

Vì n=10 nên ta có:

{Q_1} = 3,155; {Q_3} = 3,920\({Q_1} = 3,155; {Q_3} = 3,920\)

Khoảng tứ phân vị {\Delta _Q} = {Q_3} - {Q_1} = 3,920 - 3,155 = 0,765\({\Delta _Q} = {Q_3} - {Q_1} = 3,920 - 3,155 = 0,765\)

\overline x \approx 3,481\(\overline x \approx 3,481\)

Ta có:

Giá trịĐộ lệchBình phương độ lệch
2,5930,8880,789
2,9770,5040,254
3,1550,3260,106
3,2700,2110,045
3,3870,0940,009
3,4120,0690,005
3,8130,3320,110
3,9200,4390,193
4,0420,5610,315
4,2360,7550,570
Tổng2,396

Độ lệch chuẩn:s = \sqrt {0,2396} \approx 0,489Phương sai là: {s_2} = \frac{{2,396}}{{10}} = 0,2396\(s = \sqrt {0,2396} \approx 0,489Phương sai là: {s_2} = \frac{{2,396}}{{10}} = 0,2396\)

Bài 5.16 trang 88 SGK Toán 10 KNTT

Tỉ lệ thất nghiệp ở một số quốc gia vào năm 2007 (đơn vị %) được cho như sau:

7,8 3,2 7,7 8,7 8,6 8,4 7,2 3,6

5,0 4,4 6,7 7,0 4,5 6,0 5,4

Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.

Gợi ý đáp án

Sắp xếp theo thứ tự không giảm.:

3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

Vì n=15 nên {Q_2}\({Q_2}\) = 6,7

{Q_1} = 4,5;{Q_3} = 7,8\({Q_1} = 4,5;{Q_3} = 7,8\)

{\Delta _Q} = {Q_3} - {Q_1} = 7,8 - 4,5 = 3,3\({\Delta _Q} = {Q_3} - {Q_1} = 7,8 - 4,5 = 3,3\)

{Q_3} + 1,5.{\Delta _Q} = 12,75\({Q_3} + 1,5.{\Delta _Q} = 12,75\)

{Q_1} - 1,5{\Delta _Q} = - 0,45\({Q_1} - 1,5{\Delta _Q} = - 0,45\)

Ta thấy không có giá trị nào dưới -0,45 và trên 12,75 nên không có giá trị bất thường.

Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài 14: Các số đặc trưng đo độ phân tán KNTT. Mong rằng qua bài viết này bạn đọc có thêm nhiều tài liệu để học tập tốt hơn môn Toán 10 KNTT. Mời các bạn cùng tham khảo thêm tài liệu học tập môn Ngữ văn 10 KNTT...

Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 10 Kết nối tri thức tập 1

    Xem thêm