Tính tổng nghiệm
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Kết nối tri thức nha!
Tính tổng nghiệm
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Hãy xác định tính đúng sai của mỗi ý a), b), c), d)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Tính tổng T
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Hàm số chẵn, hàm số lẻ
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = sinx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = x.cosx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số chẵn
Tìm câu sai
Trong các khẳng định sau khẳng định nào sai?
Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.
Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.
Tìm tích các tần số còn thiếu
Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Tìm vị trí số hạng đã cho
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Xác định số kết luận đúng
Cho hình chóp
có đáy
là hình bình hành. Giả sử
lần lượt là trọng tâm của tam giác
. Cho các khẳng định sau:
i) ![]()
ii) ![]()
iii) ![]()
iv) ![]()
Hỏi có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Gọi lần lượt là trung điểm của AB và CD
Do lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên
Mà
Ta có:
Mà
Vậy có 3 khẳng định đúng.
Xác định cấp số cộng
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Điều kiện cần và đủ để hàm số liên tục
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Xác định hàm số lẻ
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Chọn đáp án chính xác
Cho một cấp số nhân
có
. Tính
?
Ta có:
Ghi đáp án vào ô trống
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Tìm giao điểm của đường thẳng và mặt phẳng
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
,
là trọng tâm tam giác
. Khi đó, giao điểm của
và
là:
Hình vẽ minh họa
Kéo dài cắt
tại
.
Khi đó là giao điểm của
và
.
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Xác định nghiệm phương trình
Giải phương trình
thu được kết quả là:
Điều kiện
.
Xác định nhóm chứa tứ phân vị thứ nhất
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Chọn đáp án đúng
Dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.
|
Chiều cao (m) |
[150; 153) |
[153; 156) |
[156; 159) |
[159; 162) |
[162; 165) |
[165; 168) |
|
Số học sinh |
10 |
15 |
28 |
22 |
14 |
11 |
Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là
Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là .
Giá trị đại diện cho nhóm là .
Mệnh đề đúng?
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Xét tính đúng sai của mỗi kết luận
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Chọn khẳng định đúng
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Mệnh đề nào dưới đây sai
Cho hàm số
và
là hai hàm số liên tục tại điểm
. Mệnh đề nào dưới đây sai?
Xét trường hợp liên tục tại
và
thì hàm số
không xác định tại
.
Tìm mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Tìm đường thẳng không song song với A'B'
Cho hình chóp
. Gọi
lần lượt là trung điểm của các cạnh
và
. Trong các đường thẳng sau đây, đường thẳng nào không song song với
?
Hình vẽ minh họa

Ta có: lần lượt là trung điểm của các cạnh
lần lượt là đường trung bình của tam giác
.
Và là hình bình hành
=>
Vậy không song song với
.
Mặt phẳng nào song song với (IJK)
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Tính giới hạn của dãy số
bằng:
Ta có:
Tính độ dài cạnh BC
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn
. Các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và
. Tính độ dài cạnh BC.

Gọi
Mặt khác
Do đó
PT có nghiệm?
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Mệnh đề nào sau đây là đúng?
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Tìm ảnh của A, B' qua phép chiếu song song
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Ta có: nên ảnh của điểm
qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Mặt khác điểm nên ảnh của
qua qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Tính tứ phân vị thứ ba
Cho bảng dữ liệu như sau:
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tần số tích lũy | 8 | 20 | 34 | 44 | 50 |
Ta có:
=> Nhóm chứa là [25; 30)
Khi đó ta tìm được các giá trị:
Tính giá trị của biểu thức
Cho tứ diện
. Trên
,
lần lượt lấy các điểm
và
sao cho
cắt
tại
. Điểm
không thuộc mặt phẳng nào trong các mặt phẳng sau?
Hình vẽ minh họa
Do và
.
Do .
Xác định sự đúng sai của các kết luận
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Tính giá trị của giới hạn
Giá trị của giới hạn
là:
Ta có:
Điều kiện của tanx
có nghĩa khi nào?
Để có nghĩa thì
=>
Xác định đồ thị hàm số lượng giác
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Chọn đáp án đúng
Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:
7,3 | 7,8 | 7,5 | 6,6 | 8,5 | 8,3 | 8,3 |
7,5 | 8,4 | 8,6 | 7,4 | 8,2 | 8,0 | 8,1 |
8,7 | 8,2 | 8,8 | 8,1 | 7,7 | 7,8 | 8,5 |
7,0 | 7,9 | 6,9 | 9,4 | 9,0 | 8,0 | 8,7 |
8,9 | 7,6 | 8,0 | 8,2 | 7,9 | 7,7 | 7,2 |
Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:
Khoảng biến thiên:
Ta chia thành các nhóm sau:
Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:
Chiều cao (m) | Số cây |
[6,5; 7) | 2 |
[7; 7,5) | 4 |
[7,5; 8) | 9 |
[8; 8,5) | 11 |
[8,5; 9) | 7 |
[9; 9,5) | 2 |
Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).
Chọn khẳng định đúng
Cho tứ diện
. Trung điểm các cạnh
lần lượt là các điểm
. Giả sử
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
=> là đường thẳng song song với
và
.
=> song song với
Chọn khẳng định sai
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Tính tổng 100 số hạng đầu của cấp số cộng
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Chọn kết quả đúng
Tính tổng
?
Xét dãy số là cấp số nhân với
Ghi đáp án vào ô trống
Cho hình chóp
có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Cho hình chóp
có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Hình vẽ minh họa
Ta kẻ ,
,
.
Vì mặt phẳng đi qua
, song song với
và
nên
đều thuộc
và thiết diện của hình chóp cắt bởi mặt phẳng
là tứ giác
.
Khi đó //
Tương tự, ta có được .
Suy ra và
là hình vuông.
Suy ra
Khi đó
Vậy
Tính giá trị biểu thức F
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Tính giới hạn dãy số
Cho hai dãy số
với
và
. Khi đó
bằng:
Ta có:
Xác định giới hạn D
Xác định giới hạn ![]()
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: