Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Đường thẳng và mặt phẳng trong không gian

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Đường thẳng và mặt phẳng trong không gian sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn hình vẽ phù hợp yêu cầu bài toán

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hướng dẫn:

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 2: Nhận biết
    Tìm mệnh đề sai

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?

    Hướng dẫn:

    Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.

  • Câu 4: Vận dụng
    Tìm giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABCD, biết AC \cap BD \equiv MAB \cap CD \equiv N. Tìm giao tuyến của hai mặt phẳng (SAC)(SBD).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có S là điểm chung của hai mặt phẳng (SAC)(SBD).

    AC \cap BD \equiv Mnên M là điểm chung của hai mặt phẳng (SAC)(SBD).

    Do đó giao tuyến của hai mặt phẳng (SAC)(SBD)SM.

  • Câu 5: Vận dụng
    Tìm giao tuyến của đường thẳng và mặt phẳng

    Cho hình lăng trụ ABC.A'B'C'. Gọi M;M' lần lượt là trung điểm của BCB'C'. Giao của AM' với (A'BC) là:

    Hướng dẫn:

    Hình vẽ minh họa

    M;M' là trung điểm của BCB'C' nên MM'//BB'//CC'//AA'

    Suy ra A;A';M';M cùng thuộc một mặt phẳng.

    Trong mặt phẳng (AA'M'M) gọi T là giao điểm của A'MAM'.

    Ta có: \left\{ \begin{matrix}
A'M \cap AM' \equiv T \\
A'M \subset (A'BC) \\
\end{matrix} ight.

    \Rightarrow AM' \cap (A'BC) =
A'M \cap AM' = T

    Vậy giao của AM' với (A'BC) là giao của AM' với A'M.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Hướng dẫn:

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 7: Thông hiểu
    Tìm giao tuyến

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD//BC. Gọi M là trung điểm của CD. Giao tuyến của mặt phẳng (MSB)(SAC) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là giao điểm của ACBM. Khi đó: SI = (MSB) \cap (SAC).

  • Câu 8: Nhận biết
    Tìm giao tuyến

    Cho hình chóp S.ABC. Tìm giao tuyến của hai mặt phẳng (SBC)(SAC).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: (SBC) \cap (SAC) = SC

  • Câu 9: Thông hiểu
    Tìm giao điểm của đường thẳng và mặt phẳng

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 10: Thông hiểu
    Xác định giao tuyến

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của hai mặt phẳng (SAC)(SBD) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: S \in (SAC) \cap
(SBD)(*)

    Mặt khác \left\{ \begin{matrix}
O \in AC \subset (SAC) \\
O \in BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow O \in (SAC) \cap
(SBD)(**)

    Từ (*) và (**) ta suy ra SO = (SAC) \cap
(SBD)

  • Câu 11: Nhận biết
    Số cạnh của hình tứ diện

    Hình tứ diện có bao nhiêu cạnh?

    Hướng dẫn:

    Hình tứ diện có 6 cạnh.

  • Câu 12: Vận dụng
    Tính độ dài đoạn thẳng G1G2

    Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi G_{1};G_{2} lần lượt là trọng tâm của tam giác BCDACD. Khi đó độ dài đoạn thẳng G_{1}G_{2} bằng:

    Hướng dẫn:

    Hình vẽ minh họa:

    Gọi I là trung điểm của CD.

    Trong tam giác IAB ta có:

    \frac{IG_{1}}{IB} = \frac{IG_{2}}{IA} =
\frac{1}{3} (theo tính chất trọng tâm tam giác)

    \Rightarrow \frac{G_{1}G_{2}}{AB} =
\frac{1}{3} \Rightarrow G_{1}G_{2} = \frac{a}{3}

  • Câu 13: Vận dụng
    Tính độ dài GG'

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Hướng dẫn:

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 14: Thông hiểu
    Tìm khẳng định sai

    Chọn khẳng định sai trong các khẳng định sau.

    Hướng dẫn:

    Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”

    Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”

  • Câu 15: Nhận biết
    Chọn kí hiệu đúng

    Cho điểm A, đường thẳng d và mặt phẳng (P). Kí hiệu nào sau đây đúng?

    Hướng dẫn:

    Kí hiệu đúng là: d \subset
(P)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (27%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 11 - Kết nối tri thức với cuộc sống

Xem thêm