Tìm PT tương đương
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Mời các bạn học cùng thử sức với Đề thi học kì 1 Toán 11 Kết nối tri thức nha!
Tìm PT tương đương
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Chọn kết quả chính xác
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Chọn kết luận đúng
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Chọn kết quả đúng
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Chọn mệnh đề sai
Chọn mệnh đề sai.
Qua phép chiếu song song không thể biến một tứ diện thành một đường thẳng vì các cạnh của tứ diện đều là đoạn thẳng.
Nó cũng không thể biến tứ diện thành một đoạn thẳng vì khi đó các cạnh của tứ diện nằm trong một mặt phẳng.
Điền vào ô trống các giá trị còn thiếu
Cho tập hợp dữ liệu như sau:
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Điền vào ô trống các giá trị còn thiếu:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Cho tập hợp dữ liệu như sau:
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Điền vào ô trống các giá trị còn thiếu:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Ta có:
Nhóm | Giá trị đại diện | Tần số |
(0; 10] | 5 | 3 |
(10; 20] | 15 | 5 |
(20; 30] | 25 | 3 |
(30; 40] | 35 | 4 |
Chọn đáp án đúng
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Xác định công thức tổng quát của dãy số
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.
Chọn khẳng định sai
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Chọn đáp án đúng
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Tính f(0)
Cho hàm số
xác định và liên tục trên
với
với
. Tính
.
Ta có hàm số xác định và liên tục trên
nên suy ra
Ghi đáp án vào ô trống
Cho tứ diện
, biết tam giác
có diện tích bằng 16. Mặt phẳng
đi qua trung điểm của
và song song với mặt phẳng
cắt tứ diện theo một thiết diện có diện tích bằng
Đáp án: 4
Cho tứ diện
, biết tam giác
có diện tích bằng 16. Mặt phẳng
đi qua trung điểm của
và song song với mặt phẳng
cắt tứ diện theo một thiết diện có diện tích bằng
Đáp án: 4
Hình vẽ minh họa
Gọi là trung điểm của
.
Gọi (
), do
là trung điểm của
.
Gọi (
), do
là trung điểm của
.
Thiết diện của tứ diện cắt bởi mặt phẳng
là
.
Gọi lần lượt là trung điểm của
và
.
Ta chứng minh được (c – c – c).
Ta có
Vậy
Tìm đường thẳng song song với giao tuyến hai mặt phẳng
Cho hình chóp
có đáy
là hình chữ nhật. Tìm đường thẳng song song với giao tuyến hai mặt phẳng
và
?
Hình vẽ minh họa
Xét hai mặt phẳng và
ta có:
là điểm chung
Mà với
là đường thẳng đi qua
và song song với
.
Tìm tập xác định của hàm số
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Điều kiện để dãy số vừa lập thành CSC vừa lập thành CSN
Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:
Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.
Ta có:
Giải phương trình lượng giác
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Tính trung vị của mẫu số liệu
Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:
Tuổi | Nhỏ hơn 10 | Nhỏ hơn 20 | Nhỏ hơn 30 | Nhỏ hơn 40 | Nhỏ hơn 50 | Nhỏ hơn 60 | Nhỏ hơn 70 | Nhỏ hơn 80 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi (năm) | (0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
|
Số người (nghìn người) | 2 | 3 | 4 | 3 | 2 | 1 | 0,5 | 0,1 | N = 15,6 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)
Điền kết quả vào ô trống
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
Tính giới hạn dãy số
bằng:
Ta có:
Tìm trung điểm đường thẳng d đi qua
Cho tứ diện
. Trung điểm của các cạnh
lần lượt là các điểm
. Giả sử
. Hỏi đường thẳng
đi qua trung điểm của đoạn thẳng nào?
Hình vẽ minh họa
Ta có: nên giao tuyến của hai mặt phẳng
sẽ đi qua điểm
và song song với
.
Do đó giao tuyến sẽ đi qua trung điểm của
.
Tìm các giá trị nguyên của tham số a thỏa mãn điều kiện
Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để
.
Ta có:
Vì
Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Tìm hình tạo bởi các giao tuyến
Cho hình chóp tứ giác
. Gọi
là trung điểm của
,
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:
Trường hợp 1:
Hình vẽ minh hoạ
Nếu . Gọi
Nếu
=> Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Nếu . Gọi
Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Trường hợp 2:
Hình vẽ minh hoạ
Nếu . Hình tạo bởi các giao tuyến của mặt phẳng
với hình chóp là tam giác
.
Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.
Tìm giao điểm đường thẳng và mặt phẳng
Cho tứ giác
có
là giao điểm của
. Lấy một điểm
bất kì không thuộc
, một điểm
bất kì thuộc cạnh
. Gọi
là giao điểm của
và
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa
Chọn mặt phẳng phụ (SBD) chứa SD.
Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).
Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).
Trong mặt phẳng ( ABCD) có
Trong mặt phẳng (SAC) có
Suy ra
Trong mặt phẳng (SBD) gọi và do
Tính giá trị của nhóm số liệu thứ tư
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Giá trị đại diện của nhóm thứ tư là:
Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là .
Tính số hạng của cấp số nhân
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Xác định mệnh đề đúng
Cho phương trình
. Mệnh đề nào sau đây đúng?
Xét hàm số là đa thực có tập xác định
nên liên tục trên
.
Ta có:
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
Vậy phương trình (*) đã cho có các nghiệm thỏa mãn
.
Chọn đáp án đúng
Một nhà thực vật học khảo sát chiều cao của một số cây trong khu rừng, kết quả đo được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Trong biểu đồ, trục hoành biểu thị chiều cao của cây (đơn vị: mét), trục tung biểu thị số lượng cây tương ứng. Số cây có chiều cao không nhỏ hơn 9,1m là:
Quan sát biểu đồ dữ liệu ta thấy:
Số lượng cây có chiều cao không nhỏ hơn 9,1m là: (cây)
Tìm số hạng tổng quát của dãy số
Cho dãy số có các số hạng đầu là
. Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?
Ta có: loại các đáp án
và
. Ta kiểm tra
Xét đáp án có
Xét đáp án có
là đáp án đúng.
Xác định dãy số tổng quát
Cho cấp số cộng
. Tính ![]()
Ta có:
Chọn đáp án đúng
Khẳng định nào dưới đây đúng?
Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.
Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.
Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.
Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.
Tính độ dài cạnh BC
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn
. Các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và
. Tính độ dài cạnh BC.

Gọi
Mặt khác
Do đó
Tìm các giao tuyến của mặt phẳng và hình chóp
Cho hình chóp tứ giác
đáy là hình bình hành,
là trung điểm của
. Giả sử
là mặt phẳng đi qua
đồng thời song song với
và
. Xác định các giao tuyến của mặt phẳng
và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
Các giao tuyến của mặt phẳng và hình chóp là tứ giác
Lại có nên
là hình thang.
Chọn đáp án đúng
Góc
đổi sang độ bằng bao nhiêu?
Ta có: .
Chọn khẳng định sai
Cho tứ diện
. Lấy
lần lượt là trung điểm của các cạnh
. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa
Ta có: MN // PQ (vì cùng song song với BC)
Ta có: (vì
lần lượt là các đường trung bình của
.
Từ hai kết quả trên ta suy ra tứ giác MNPQ là hình bình hành nên MQ, PN không thể chéo nhau.
Xác định khẳng định đúng
Chọn khẳng định đúng?
Tìm khoảng chứa tứ phân vị thứ ba
Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Ta có:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) | Tổng |
Tần số | 8 | 12 | 22 | 17 | N = 59 |
Tần số tích lũy | 8 | 20 | 42 | 59 |
|
Ta có:
Vậy nhóm chứa tứ phân vị thứ ba là:
Chọn khẳng định sai
Cho góc lượng giác
. Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Chọn giá trị đúng của giới hạn?
Cho dãy số
với
và
. Chọn giá trị đúng của
trong các số sau:
Áp dụng phương pháp quy nạp toán học ta có
Nên ta có :
Suy ra : , mà
Vậy .
Tính tổng P
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Tính tổng các nghiệm phương trình
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Xác định giới hạn
bằng:
Ta có:
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Tính giới hạn hàm số tại một điểm
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](/data/image/holder.png)
Ta có:
Vậy
Chọn khẳng định sai
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Từ hình vẽ ta thấy => "
chéo nhau" sai.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: