Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa HK2 Toán 11 Kết nối tri thức năm học 2023 – 2024 (Đề 1)

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi giữa học kì 2 Toán 11 Kết nối tri thức - có đáp án nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Xác định kết luận sai

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 2: Nhận biết

    Chọn kết quả chính xác

    Tính giá trị của \log_{t}\sqrt{t} với mọi giá trị t > 0,t eq 1?

    Ta có: \log_{t}\sqrt{t} =\log_{t}t^{\frac{1}{2}} = \frac{1}{2}\log_{t}t = \frac{1}{2}

  • Câu 3: Thông hiểu

    Tính giá trị của biểu thức D

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 4: Nhận biết

    Tính số cách đi từ tỉnh A đến tỉnh B

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 5: Thông hiểu

    Biến đổi biểu thức D

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 6: Nhận biết

    Tìm hàm số đồng biến

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

  • Câu 7: Vận dụng cao

    Chọn đáp án đúng

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 8: Nhận biết

    Tính sin góc giữa hai đường thẳng SA và BC

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, tam giác SAD là tam giác đều. Tìm sin của góc tạo bởi hai đường thẳng SABC.

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(BD;SA) = \widehat{SAD} = 60^{0}

    \Rightarrow \sin(BC;SA) =
\frac{\sqrt{3}}{2}

  • Câu 9: Thông hiểu

    Tính số phần tử của biến cố Z

    Chọn ngẫu nhiên 2 quả cầu trong một hộp giấy có chứa 4 quả cầu xanh, 3 quả cầu đỏ và 2 quả cầu vàng. Giả sử T là biến cố chọn được 2 quả khác màu, Z là biến cố đối của biến cố T. Tính số kết quả thuận lợi cho biến cố Z?

    Ta có: T là biến cố chọn được 2 quả khác màu

    Khi đó \overline{T} là biến cố chọn được hai quả cùng màu.

    Ta có: n\left( \overline{T} ight) =
C_{4}^{2} + C_{3}^{2} + C_{2}^{2} = 10

    Mà Z là biến cố đối của biến cố T

    \Rightarrow n\left( \overline{T} ight)
= n(Z) = 10

  • Câu 10: Vận dụng cao

    Tính cosin góc giữa đường thẳng và mặt phẳng

    Cho hình chóp tứ giác đều S.ABCD có AB = a, O là trung điểm của AC và SO = b. Gọi (∆) là đường thẳng đi qua C, (∆) chứa trong mặt phẳng (ABCD) và khoảng cách từ O đên (∆) là \frac{a\sqrt{14}}{6}. Giá trị lượng giác \cos\left( SA;(\Delta) ight) bằng bao nhiêu?

    Từ A kẻ (∆’) // (∆)

    Từ O kẻ (d) ⊥ (∆) cắt (∆) và (∆’) lần lượt tại H, K

    Ta có: \left\{ \begin{matrix}AK\bot OK \\AK\bot SO \\\end{matrix} ight.\  \Rightarrow AK\bot(SOK) \Rightarrow AK\botSK

    Ta được \cos\left( SA;(\Delta) ight) =\cos\left( SA;(\Delta') ight)

    Ta có: \left\{ \begin{matrix}SA = \dfrac{\sqrt{4b^{2} + 2a^{2}}}{2} \\AK = \dfrac{a}{3} \\\end{matrix} ight.

    => \cos\left( SA;(\Delta) ight) =\frac{AK}{SA} = \frac{2a}{3\sqrt{4b^{2} + 2a^{2}}}

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Hãy biểu diễn \log_{6}45 theo hai giá trị x,y biết x =\log_{2}3;y = \log_{5}3?

    Ta có:

    \log_{6}45 = \frac{\log_{3}\left( 5.3^{2}ight)}{\log_{3}(2.3)} = \frac{\log_{3}5 + 2}{\log_{3}2 + 1}

    = \dfrac{\dfrac{1}{y} + 2}{\dfrac{1}{x} +1} = \dfrac{x + 2xy}{xy + y}

  • Câu 12: Vận dụng

    Chọn đáp án đúng

    Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?

    Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:

    T_{60} = 10^{7}.(1 + 0,5\%)\left\lbrack
\frac{(1 + 0,5\%)^{60} - 1}{0,5\%} ightbrack \approx 701 (triệu đồng)

  • Câu 13: Vận dụng

    Xác định hàm số

    Cho hàm số y =
a^{x} có đồ thị như hình vẽ, y =
f(x) có đồ thị đối xứng với đồ thị hàm số y = a^{x} qua đường thẳng y = - x. Xác định hàm số f(x).

    Ta có:

    Phép đối xứng trục qua đường thẳng y = -
x biến mỗi điểm có tọa độ (x;y) thành điểm có tọa độ ( - y; - x).

    Mỗi điểm trên đồ thị hàm số y =
a^{x} có dạng \left( u;a^{u}
ight), lấy đối xứng qua d ta được điểm có tọa độ \left( - a^{u};u ight) thuộc đồ thị hàm số y = f(x).

    Do đó f\left( - a^{u} ight) = -
u. Đặt x = - a^{u}, khi đó x = log_{a}( - x). Vậy f(x) = - \log_{a}( - x).

  • Câu 14: Vận dụng

    Tính số kết quả thuận lợi của biến cố M

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 15: Thông hiểu

    Chọn kết luận đúng

    Giả sử \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
2^{\frac{a}{b}}, với \frac{a}{b} là phân số tối giản. Gọi K = a^{2} + b^{2}. Kết luận nào dưới đây đúng?

    Ta có:

    \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
\sqrt[5]{8\sqrt{2.2^{\frac{1}{3}}}} = \sqrt[5]{8\sqrt{2^{\frac{4}{3}}}}
= \sqrt[5]{2^{3}.2^{\frac{2}{3}}}

    = \sqrt[5]{2^{\frac{11}{3}}} =
2^{\frac{11}{15}} \Rightarrow \frac{a}{b} = \frac{11}{15} \Rightarrow
\left\{ \begin{matrix}
a = 11 \\
b = 15 \\
\end{matrix} ight.

    \Rightarrow K = 11^{2} + 15^{2} = 346
\in (340;350)

  • Câu 16: Thông hiểu

    Tính số trận đấu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 17: Vận dụng

    Tính cos(CG; BD)

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng x, SA\bot(ABCD);SA = 2x. Gọi F trung điểm các cạnh AB, G là trung điểm của SF. Tính \cos(CG;BD)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD, H là trung điểm của SI.

    Ta có: GH // FI; BD // FI nên GH // BD => (CG;BD) = (CG;GH) = \widehat{CGH}

    Ta có: CI = \sqrt{CD^{2} + DI^{2}} =
\sqrt{x^{2} + \frac{x^{2}}{4}} = \frac{x\sqrt{5}}{2}

    \Rightarrow CI =
\frac{x\sqrt{5}}{2}

    SF = SI = \sqrt{SA^{2} + AF^{2}} =
\sqrt{(2x)^{2} + \left( \frac{x}{2} ight)^{2}} =
\frac{x\sqrt{17}}{2}

    SC = \sqrt{SA^{2} + AC^{2}} =
\sqrt{(2x)^{2} + \left( x\sqrt{2} ight)^{2}} = x\sqrt{6}

    Khi đó:

    CG = \sqrt{\frac{CF^{2} + SC^{2}}{2} -\frac{SF^{2}}{4}}= \sqrt{\dfrac{\dfrac{5x^{2}}{4} + 6x^{2}}{2} -\dfrac{9x^{2}}{4}} = \dfrac{x\sqrt{41}}{4}

    GH = \frac{1}{2}FI =
\frac{1}{2}.\frac{1}{2}BD = \frac{x\sqrt{2}}{4}

    Ta có: \cos\widehat{CGH} = \frac{GC^{2} +
GH^{2} - HC^{2}}{2.GC.GH}

    = \dfrac{\left( \dfrac{x\sqrt{41}}{4}ight)^{2} + \left( \dfrac{x\sqrt{2}}{4} ight)^{2} - \left(\dfrac{x\sqrt{41}}{4} ight)^{2}}{2.\left( \dfrac{x\sqrt{41}}{4}ight).\left( \dfrac{x\sqrt{2}}{4} ight)} =\dfrac{\sqrt{82}}{82}

    \Rightarrow \cos(CG;BD) =
\frac{\sqrt{82}}{82}

  • Câu 18: Thông hiểu

    Chọn kết luận đúng

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

  • Câu 19: Vận dụng

    Tính diện tích thiết diện

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 20: Thông hiểu

    Chọn kết luận đúng

    Nếu x,y là hai số thực dương bất kì thỏa mãn 4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y thì khẳng định nào dưới đây đúng?

    Ta có:

    4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y

    \Leftrightarrow (2\ln x - 3\ln y)^{2} =0

    \Leftrightarrow 2\ln x - 3\ln y =0

    \Leftrightarrow x^{2} =
y^{3}

  • Câu 21: Thông hiểu

    Tìm nghiệm của phương trình

    Phương trình \log(x - 1) + \log(x - 3) = \log(x + 3) có tất cả bao nhiêu nghiệm?

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
x + 3 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
x > - 3 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log\left\lbrack (x -
1)(x - 3) ightbrack = \log(x + 3)

    \Leftrightarrow (x - 1)(x - 3) = x +
3

    \Leftrightarrow x^{2} - 5x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 22: Nhận biết

    Giải bất phương trình

    Tập nghiệm của bất phương trình 2^{2m} < 2^{m + 4} là:

    Ta có:

    2^{2m} < 2^{m + 4} \Leftrightarrow 2m
< m + 4 \Leftrightarrow m < 4

    Vậy tập nghiệm của bất phương trình là: m
\in ( - \infty;4)

  • Câu 23: Thông hiểu

    Tìm giá trị của tham số a

    Cho đồ thị hàm số y = f(x) = \log_{a}x;(a > 0,a eq 1) như hình vẽ:

    Xác định giá trị a?

    Đồ thị hàm số y = f(x) =\log_{a}x đi qua điểm (2; -1) nên \log_{a}2 = - 1

    Khi đó a^{- 1} = 2 \Leftrightarrow\frac{1}{a} = 2 \Leftrightarrow a = \frac{1}{2}

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 25: Vận dụng

    Tìm các giá trị nguyên của m

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 26: Vận dụng cao

    Tính giá trị biểu thức

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Tìm kết luận đúng

    Cho hình chóp tam giác S.ABC có đáy ABC vuông tại B, SA\bot(ABC). Khi đó:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CB\bot SA \\
CB\bot AB \\
\end{matrix} ight.\  \Rightarrow CB\bot(SAB)

  • Câu 28: Nhận biết

    Rút gọn biểu thức A

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 29: Nhận biết

    Chọn đáp án đúng

    Tìm hàm số nghịch biến trên \mathbb{R} trong các hàm số sau?

    Ta có:

    0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} nghịch biến trên \mathbb{R}.

  • Câu 30: Nhận biết

    Chọn kết quả đúng

    Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình 3^{x} <
2?

    Ta có:

    3^{x} < 2 \Leftrightarrow x <
\log_{3}2

    \Rightarrow x \in \left( -\infty;\log_{3}2 ight)

    Vậy tập nghiệm của bất phương trình đã cho là \left( - \infty;\log_{3}2 ight)

  • Câu 31: Thông hiểu

    Tìm kết quả đúng

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = AC = aBC =
a\sqrt{2}. Kết quả nào dưới đây đúng?

    Ta có:

    BC^{2} = AB^{2} + AC^{2} suy ra tam giác ABC vuông tại A

    => M là tâm đường tròn ngoại tiếp tam giác ABC.

    SA = SB = SC nên SM là đường cao của hình chóp S.ABC.

    Hình vẽ minh họa

    Gọi N, I lần lượt là trung điểm cạnh AC và SB.

    Ta có: MN // AB và IM // SC nên (SC,AB) =
(IM,MN)

    BN = \sqrt{AB^{2} + AN^{2}} =
\sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{a\sqrt{5}}{2}

    SN = \sqrt{SC^{2} - NC^{2}} =
\sqrt{a^{2} - \frac{a^{2}}{4}} = \frac{a\sqrt{3}}{2}

    MN = \frac{a}{2};MI =
\frac{a}{2}

    Xét tam giác IMN có

    \cos\widehat{NMI} = \dfrac{MN^{2} +IM^{2} - IN^{2}}{2.MN.IM}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMI} =
120^{0}

    \Rightarrow (SC,AB) = (IM,MN) =
60^{0}

  • Câu 32: Thông hiểu

    Tìm kết quả đúng

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

  • Câu 33: Thông hiểu

    Tính lãi suất ngân hàng

    Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.

    Áp dụng công thức tính lãi kép ta có:

    T = a.(1 + x\%)^{n}

    \Leftrightarrow 252495392 = 2.10^{8}.(1
+ x\%)^{4}

    \Leftrightarrow x = 6(tm)

    Vậy lãi suất ngân hàng là 6%.

  • Câu 34: Nhận biết

    Tính giá trị biểu thức

    \log_{2}\left(\frac{1}{16} ight) = ...

    Ta có: \log_{2}\left( \dfrac{1}{16} ight)= \log_{2}2^{- 4} = - 4

  • Câu 35: Thông hiểu

    Tính cosin góc giữa hai đường thẳng

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = 2AC =
AA' = 2a. Gọi M là trung điểm của BC. Tính cosin góc giữa hai đường thẳng AMB'C.

    Hình vẽ minh họa

    Gọi N là trung điểm của BB’, ta có: MN//B’C nên (AM;B'C) = (AM;MN) =
\widehat{AMN}

    Ta có:

    BC = \sqrt{AB^{2} + AC^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    AM = \frac{BC}{2} =
\frac{a\sqrt{5}}{2}

    AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{4a^{2} + a^{2}} = a\sqrt{5}

    MN = \frac{B'C}{2} =
\frac{\sqrt{BC^{2} + BB'^{2}}}{2} = \frac{\sqrt{5a^{2} + 4a^{2}}}{2}
= \frac{3a}{2}

    Áp dụng định lí cosin trong tam giác MNA ta có:

    \cos\widehat{NMA} = \frac{MN^{2} +
MA^{2} - AN^{2}}{2MN.MA}

    = \dfrac{\dfrac{9a^{2}}{4} +\dfrac{5a^{2}}{4} - 5a^{2}}{2.\dfrac{3a}{2}.\dfrac{a\sqrt{5}}{2}} = -\dfrac{\sqrt{5}}{5}

    \Rightarrow \cos(AM;B'C) =
\frac{\sqrt{5}}{5}

  • Câu 36: Nhận biết

    Chọn đáp án đúng

    Cho a là số thực dương. Biểu thức a^{3}\sqrt[3]{a^{2}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    a^{3}\sqrt[3]{a^{2}} =
a^{3}.a^{\frac{2}{3}} = a^{3 + \frac{2}{3}} =
a^{\frac{11}{3}}

  • Câu 37: Thông hiểu

    Xác định thiết diện tạo bởi (α) và hình lập phương

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 38: Nhận biết

    Tính số phần tử không gian mẫu

    Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{3} =
220

  • Câu 39: Thông hiểu

    Giải bất phương trình

    Xác định tập nghiệm của bất phương trình \log_{3}(2x - 3) > 1?

    Điều kiện x > \frac{3}{2}

    Ta có: \log_{3}(2x - 3) >1

    \Leftrightarrow 2x - 3 > 3
\Leftrightarrow x > 3

    Vậy tập nghiệm bất phương trình là S =
(3; + \infty)

  • Câu 40: Nhận biết

    Xác định mệnh đề đúng

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa HK2 Toán 11 Kết nối tri thức năm học 2023 – 2024 (Đề 1) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo