Mặt phẳng (BCD) vuông góc với mặt phẳng nào
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:
Hình vẽ minh họa:

Ta có:
Mà
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 KNTT Chương 7: Quan hệ vuông góc trong không gian nha!
Mặt phẳng (BCD) vuông góc với mặt phẳng nào
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:
Hình vẽ minh họa:

Ta có:
Mà
Chỉ ra mệnh đề sai
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.
Chọn mệnh đề đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a, SO ⊥ (ABCD) và
. Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Hình vẽ minh họa:
Gọi Q là trung điểm BC => OQ ⊥ BC.
Ta có:
Do đó ((SBC), (ABCD)) = (SQ, OQ) =
Tam giác vuông SOQ ta có:
Vậy mặt phẳng (SBC) hợp với mặt đáy (ABCD) một góc 60◦
Tính chiều cao hình chóp
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Mệnh đề nào là mệnh đề sai?
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).
Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.
Tính góc giữa đường thẳng và mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết
.
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Chọn đáp án đúng
Cho hình chóp tam giác
, đáy là tam giác
vuông cân tại C và
. Biết tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Thể tích hình chóp tam giác
bằng bao nhiêu?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Tam giác SAB đều nên
Tam giác ABC vuông cân tại C nên
Vậy thể tích hình chóp là:
Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Tính góc giữa hai đường thẳng
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a,
, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.

Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Khoảng cách giữa hai đường thẳng BC và AB’
Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng:
Hình vẽ minh họa:
Ta có BC // B’C’ => BC // (AB’C’)
=> d(BC, AB’) = d(BC, (AB’C’)) = d(B, (AB’C’)) = d(A’ ,(AB’C’))
Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI
Ta có: B’C’⊥ A’I và B’C’⊥ A’A nên B’C’⊥ (A’AI) => B’C’⊥ A’H
Mà AI ⊥ A’H
=> (AB’C’) ⊥ A’H.
Khi đó:
Vậy khoảng cách cần tìm là
Tính số đo góc giữa hai đường thẳng
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Phân tích sự đúng sai của các kết luận
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Tính khoảng cách d từ A đến (SCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).
Hình vẽ minh họa

Gọi H là trung điểm của AB =>
Ta có: AH // CD =>
Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM
Tìm khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =
Tính thể tích khối hộp chữ nhật
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Tính góc giữa AC’ và BD
Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa AC’ và BD?

Hình vẽ minh họa:
Ta có:
BD ⊥ AC (do ABCD là hình vuông)
BD ⊥ CC’
⇒ BD ⊥ AC’
Do đó góc giữa AC' và BD bằng 900
Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = AB = a, AD = 3a. Gọi M là trung điểm của BC. Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM).
Hình vẽ minh họa:
Gọi H là hình chiếu vuông góc của A lên DM, ta có DM ⊥ (SAH).
Gọi α là góc giữa (SDM) và (ABCD) ta có:
Ta có:
Ta có:
Ta lại có:
Vậy
Tính góc giữa hai đường thẳng BC và SA
Cho hình chóp
có
là hình vuông cạnh
, tam giác
đều. góc giữa
và
là:
Hình vẽ minh họa
Vì
Tìm khẳng định đúng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Chọn mệnh đề đúng
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: