Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm điều kiện để đường thẳng và mặt phẳng song song

    Điều kiện để đường thẳng m song song với mặt phẳng (\beta):

    Đường thẳng m song song với mặt phẳng (\beta) khi và chỉ khi m không nằm trong (\beta), đồng thời m song song với một đường thẳng n nằm trong (\beta).

  • Câu 2: Vận dụng cao

    Tỉ số độ dài cạnh AB và CD

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 3: Vận dụng cao

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.

    Hình vẽ minh họa

    Tìm điều kiện của AB và CD thỏa mãn yêu cầu bài toán

    Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD

    => IJ // AB // CD

    => Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)

    => (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD

    Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.

    G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:

    \frac{{MN}}{{AB}} = \frac{{SG}}{{SE}} = \frac{2}{3} (Với E là trung điểm của AB)

    => MN = \frac{2}{3}AB

    Ta lại có: IJ là đường trung bình của hình thang ABCD nên: IJ = \frac{{AB + CD}}{2}

    Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ

    \begin{matrix}  \dfrac{2}{3}AB = \dfrac{1}{2}\left( {AB + CD} ight) \hfill \\   \Leftrightarrow \dfrac{1}{6}AB = \dfrac{1}{2}CD \hfill \\   \Leftrightarrow AB = 3CD \hfill \\ \end{matrix}

  • Câu 4: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 5: Thông hiểu

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD. Gọi I là trung điểm AB,\ \ J là điểm thuộc cạnh AD sao cho JD
= \frac{1}{3}JA, gọi E = IJ \cap
BD. Tìm giao tuyến của mp(CIJ)mp(BCD). Giao tuyến của mp(CIJ)mp(BCD) cắt đoạn BD tại mấy điểm.

    Đáp án: 0

    Đáp án là:

    Cho tứ diện ABCD. Gọi I là trung điểm AB,\ \ J là điểm thuộc cạnh AD sao cho JD
= \frac{1}{3}JA, gọi E = IJ \cap
BD. Tìm giao tuyến của mp(CIJ)mp(BCD). Giao tuyến của mp(CIJ)mp(BCD) cắt đoạn BD tại mấy điểm.

    Đáp án: 0

    Hình vẽ minh họa

    Trong mặt phẳng (ABD), có E = IJ \cap BD.

    Suy ra E không thuộc đoạn BD.

    Ta có: \left\{ \begin{matrix}
E \in IJ;IJ \subset (CIJ) \\
E \in BD;BD \subset (BCD) \\
\end{matrix} ight.

    \Rightarrow E \in (CIJ) \cap
(BCD)

    \Rightarrow CE = (CIJ) \cap
(BCD)

    C,E không thuộc đoạn BD nên giao tuyến của mp(CIJ)mp(BCD) không cắt đoạnBD.

  • Câu 6: Nhận biết

    Chọn phương án thích hợp

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    “Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

    “Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

    “Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.

  • Câu 7: Thông hiểu

    Xác định thiết diện

    Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (\alpha) tùy ý thể là:

    Vì số mặt của hình chóp S.ABCD là 5 nên thiết diện tối đa chỉ có 5 cạnh.

    => Không thể là lục giác.

  • Câu 8: Thông hiểu

    Tìm giao tuyến

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD//BC. Gọi M là trung điểm của CD. Giao tuyến của mặt phẳng (MSB)(SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của ACBM. Khi đó: SI = (MSB) \cap (SAC).

  • Câu 9: Thông hiểu

    Tính tỉ số độ dài

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Lấy các điểm M \in SB,N \in SD sao cho \frac{SM}{MB} = 2;\frac{SN}{SD} =
\frac{1}{3}. Hình chiếu của M,N qua phép chiếu song song phương SO mặt phẳng chiếu (ABCD)lần lượt là P,Q. Tỉ số độ dài \frac{PO}{QO} bằng bao nhiêu?

    Hình vẽ minh hoạ

    Do P là hình chiếu song song của M qua phép chiếu song song phương SO

    \Rightarrow \frac{MB}{SB} =
\frac{BP}{BO}

    \frac{SM}{MB} = 2 \Rightarrow SM =
2MB

    \Rightarrow \frac{BP}{BO} = \frac{1}{3}
\Rightarrow \frac{OP}{OB} = \frac{2}{3}

    Chứng minh tương tự ta có: \frac{OQ}{OD}
= \frac{1}{3}

    Ta có: BO = DO \Rightarrow \frac{OP}{OQ}
= \frac{1}{2}

  • Câu 10: Vận dụng

    Tính độ dài GG'

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 11: Nhận biết

    Hoàn thành mệnh đề

    Có duy nhất một mặt phẳng đi qua

    Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.

    Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.

    Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.

    Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."

  • Câu 12: Thông hiểu

    Tìm khẳng định đúng

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 13: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 14: Thông hiểu

    Tìm giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABC, gọi M là trung điểm của BC. Tìm giao tuyến của hai mặt phẳng (SAM)(SBC).

    Hình vẽ minh họa

    Ta có: S là điểm chung của mặt phẳng (SAM)(SBC) (*)

    Ta có: \left\{ \begin{matrix}
M \in BC \\
BC \subset (SBC) \\
\end{matrix} ight.\  \Rightarrow M \in (SBC)

    => M là điểm chung của mặt phẳng (SAM)(SBC) (**)

    Từ (*) và (**) suy ra (SAM) \cap (SBC) =
SM

  • Câu 15: Thông hiểu

    Tìm hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều

    Cho tam giác ABC là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:

    Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.

    Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác ABC.

  • Câu 16: Thông hiểu

    Chọn mệnh đề sai

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 17: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Biết AB = 5a,\ CD = 2a. Gọi E là điểm thuộc cạnh SB thỏa mãn \frac{ES}{EB} = \frac{m}{n} với \frac{m}{n} là phân số tối giản. Biết rằng CE song song với mặt phẳng (SAD). Giá trị của 2m + 3n bằng

    Đáp án: 13

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Biết AB = 5a,\ CD = 2a. Gọi E là điểm thuộc cạnh SB thỏa mãn \frac{ES}{EB} = \frac{m}{n} với \frac{m}{n} là phân số tối giản. Biết rằng CE song song với mặt phẳng (SAD). Giá trị của 2m + 3n bằng

    Đáp án: 13

    Hình vẽ minh họa

    Gọi H là giao điểm của ADBC trong mặt phẳng (ABCD).

    Theo hệ quả Talet, ta có: \frac{HC}{HB} =
\frac{CD}{AB} = \frac{2}{5}

    Ta có:

    \left\{ \begin{matrix}
CE \subset (SBH) \\
CE//(SAD) \\
(SBH) \cap (SAD) = SH \\
\end{matrix} ight.\  \Rightarrow CE//SH

    \Rightarrow \frac{SE}{SB} =
\frac{HC}{HB} = \frac{2}{5} \Rightarrow SE = \frac{2}{5}SB

    \Rightarrow \frac{ES}{EB} = \frac{2}{3}
\Rightarrow 2m + 3n = 13.

  • Câu 18: Nhận biết

    Tìm khẳng định sai

    "Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?

    Hình vẽ minh họa

    Tìm khẳng định sai

    Khẳng định sai là "CE song song với FH"

  • Câu 19: Thông hiểu

    Tìm mặt phẳng song song với (IJK)

    Cho hình lăng trụ ABC.A'B'C'. Gọi I, J, K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)?

     Hình vẽ minh họa

    Tìm mặt phẳng song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Tìm giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

  • Câu 21: Vận dụng

    Tìm giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABCD, biết AC \cap BD \equiv MAB \cap CD \equiv N. Tìm giao tuyến của hai mặt phẳng (SAC)(SBD).

    Hình vẽ minh họa

    Ta có S là điểm chung của hai mặt phẳng (SAC)(SBD).

    AC \cap BD \equiv Mnên M là điểm chung của hai mặt phẳng (SAC)(SBD).

    Do đó giao tuyến của hai mặt phẳng (SAC)(SBD)SM.

  • Câu 22: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD. Trung điểm các cạnh AB,AC lần lượt là các điểm M,N. Giả sử (MND) \cap (BCD) = d. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(DMN) \supset MN \\
(DBC) \supset BC \\
MN//BC \\
\end{matrix} ight.

    => d là đường thẳng song song với MNBC.

    => d song song với (ABC)

  • Câu 23: Nhận biết

    Chọn khẳng định đúng

    Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.

    Theo lý thuyết ta có: mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó a // b.

    Vậy a và b không có điểm chung nào.

  • Câu 24: Thông hiểu

    Chọn khẳng định đúng

    Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?

     Ta có:

    Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.

    => Hai đường thẳng AD và BC chéo nhau.

  • Câu 25: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của ACBC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:

    Hình vẽ minh họa

    Trong tam giác BCD, gọi I = NP \cap CD

    Khi đó \left\{ \begin{matrix}
I \in CD \\
I \in NP,NP \subset (MNP) \\
\end{matrix} \Rightarrow I = CD \cap (MNP) ight..

    Vậy giao điểm của đường thẳng CD với (MNP) là giao điểm của NPCD.

  • Câu 26: Vận dụng

    Đặc điểm của hình tạo bởi các giao tuyến

    Cho hình hộp ABCD.A'B'C'D'. Lấy M \in AD,N \in CC' sao cho 2AM = AD2CN = CC'. Mặt phẳng (\alpha) chứa đường thẳng MN và song song với (ACB'). Xác định các giao tuyến của (\alpha) với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\alpha) với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.

    Giao tuyến của (\alpha) với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.

    Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.

    Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.

    => Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của (\alpha) với các mặt của hình hộp.

  • Câu 27: Nhận biết

    Hoàn thành mệnh đề

    Trong không gian, đường thẳng a song song với mặt phẳng (P) nếu

    Đường thẳng  a  song song với mặt phẳng  (P)  khi và chỉ khi  a  không nằm trong (P), đồng thời  a  song song với một đường thẳng b nằm trong  (P) .

  • Câu 28: Nhận biết

    Tìm số đường thẳng

    Cho mặt phẳng (\alpha) và điểm H không thuộc mặt phẳng (\alpha). Số đường thẳng đi qua H và song song với (\alpha)

    Có vô số đường thẳng đi qua H và song song với (\alpha) với điểm H không thuộc mặt phẳng (\alpha).

  • Câu 29: Thông hiểu

    Hoàn thành mệnh đề

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

  • Câu 30: Nhận biết

    Chọn mệnh đề sai

    Cho lăng trụ tam giác ABC.A'B'C'G,G' lần lượt là trọng tâm tam giác ABCA'B'C', M \in AC sao cho \frac{AM}{MC} = 2. Mệnh đề nào sai?

    Hình vẽ minh họa

    GA//(BCC'B') sai vì \left\{ \begin{matrix}
GA \cap BC = N \\
BC \subset (BCC'B') \\
\end{matrix} ight.

  • Câu 31: Thông hiểu

    Mệnh đề nào sau đây đúng

    Mệnh đề nào sau đây đúng?

    Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.

    Vậy khẳng định đúng là: Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”

  • Câu 32: Nhận biết

    Tìm hình chiếu của đường thẳng d

    Giả sử đường thẳng d cắt mặt phẳng chiếu (\alpha) tại điểm H thì hình chiếu song song của d trên mặt phẳng (\alpha) là:

    Nếu phương chiếu song song hoặc trùng với đường thẳng d thì hình chiếu là điểm H.

    Nếu phương chiếu không song song hoặc không trùng với đường thẳng d thì hình chiếu là đường thẳng đi qua điểm H.

  • Câu 33: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    - Xác định M,N :

    Trong mặt phẳng (SAC), kẻ CI cắt SA tại M;

    Trong mặt phẳng (SBD), kẻ DI cắt SB tại N.

    \left\{ \begin{matrix}
M \in CI,CI \subset (ICD) \\
M \in SA \\
\end{matrix} \Rightarrow M = SA \cap (ICD) ight..

    Tương tự: \left\{ \begin{matrix}
N \in DI,DI \subset (ICD) \\
N \in SB \\
\end{matrix} \Rightarrow N = SB \cap (ICD) ight..

    -Tính MN theo a :

    Gọi E là trung điểm BN,OE là đường trung bình của tam giác BDN \Rightarrow OE//DN.

    Trong tam giác SOE, ta có NI qua trung điểm I của SONI//OE,N là trung điểm của SE.

    Hình vẽ minh họa

    -Vậy SN = NE = EB hay SN = \frac{1}{3}SB.

    Hoàn toàn tương tự, ta chứng minh được SM
= \frac{1}{3}SA.

    Khi đó hai tam giác SMN,SAB đồng dạng vì có góc S chung và \frac{SM}{SA} = \frac{SN}{SB} =
\frac{1}{3}.

    Xét tam giác SAB, theo định lí Thalès, ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{1}{3} \Rightarrow MN = \frac{AB}{3} = \frac{a}{3}.

    - Chứng minh SK//BC//AD :

    Dễ thấy S là điểm chung của hai mặt phẳng (SBC)(SAD).

    Ta có: \left\{ \begin{matrix}
K \in CN,CN \subset (SBC) \\
K \in DM,DM \subset (SAD) \\
\end{matrix} \Rightarrow K \in (SBC) \cap (SAD) ight..

    Vì vậy SK = (SBC) \cap
(SAD).

    Khi đó: \left\{ \begin{matrix}
SK = (SBC) \cap (SAD) \\
BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD. \\
BC//AD \\
\end{matrix} ight.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

  • Câu 34: Vận dụng

    Tính tỉ số độ dài hai đường thẳng

    Cho tứ diện ABCD. Điểm Mlà trung điểm của BC, lấy N \in
AB;P \in CD sao cho BN = 2AN,CP =
3DP. Biết S = MP \cap BD,Q = AN
\cap AD, tính tỉ số độ dài của QDQA.

    Hình vẽ minh họa

    Trong mặt phẳng (BCD) qua D kẻ đường thẳng song song với BC cắt SM tại E.

    Theo định lí Talet ta có: \frac{DM}{CE} =
\frac{DP}{CP} = \frac{1}{3}MB =
MC

    \Rightarrow \frac{DE}{MB} =
\frac{1}{3}

    Mặt khác ta có: \frac{DE}{MB} =
\frac{SD}{SB} \Rightarrow \frac{SD}{SB} = \frac{1}{3}

    Trong mặt phẳng (ABD) qua D kẻ đường thẳng song song với AB cắt SN tại F.

    Theo định lí Talet ta có: \frac{SD}{SB} =
\frac{DF}{BN}. Theo chứng minh trên ta lại có \frac{SD}{SB} = \frac{1}{3}

    \frac{DF}{BN} = \frac{1}{3}.

    Theo giả thiết BN = 2AN \Rightarrow
\frac{DF}{2AN} = \frac{1}{3} \Rightarrow \frac{DF}{AN} =
\frac{2}{3}

    Mặt khác ta có: \frac{QD}{QA} =
\frac{DF}{AN} \Rightarrow \frac{QD}{QA} = \frac{2}{3}

  • Câu 35: Thông hiểu

    Chọn khẳng định đúng

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 36: Nhận biết

    Xác định giao tuyến

    Cho hình chóp S.MNP Q có đáy MNP Q là hình chữ nhật. Giao tuyến của hai mặt phẳng
    (SMN) và (SPQ) song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Hai đường thẳng chéo nhau và hai đường thẳng song song

    Xét (SMN) và (SPQ) có:

    S là điểm chung

    MN // P Q

    MN ⊂ (SMN), PQ ⊂ (SPQ)

    => (SMN) ∩ (SPQ) = d với d là đường thẳng đi qua S và song song với MN, PQ

  • Câu 37: Vận dụng

    Xác định thiết diện

    Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC

    => IJ // AB

    2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung

    => Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.

    Vậy IJ // KH // AB.

    Ta có ∆BJK = ∆AIH ⇒ JK = IH

    Mặt khác KH ≠ IJ

    Vậy thiết diện là hình thang cân IJKH.

  • Câu 38: Nhận biết

    Tìm số giao điểm phân biệt của ba đường thẳng

    Trong không gian, cho ba đường thẳng m,n,t không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.

    Giả sử ba đường thẳng m,n,t đôi một cắt lần lượt M,N,T phân biệt và tạo thành mặt phẳng (MNT).

    => m,n,t cùng nằm trên một mặt phẳng (trái giả thiết).

    => M,N,T trùng nhau, tức là m,n,t đồng quy.

    Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.

  • Câu 39: Nhận biết

    Chọn hình vẽ phù hợp yêu cầu bài toán

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 40: Vận dụng

    Ghi đáp án vào ô trống

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Đáp án là:

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Hình vẽ minh họa

    Gọi M là trung điểm của AB.

    Gọi MN = (P) \cap (ABD) (N \in AD), do (P)//(BCD) \Rightarrow MN//\ BD \Rightarrow
N là trung điểm của AD.

    Gọi MP = (P) \cap (ABC) (P \in AC), do (P)//(BCD) \Rightarrow MP//BC \Rightarrow
P là trung điểm của AC.

    Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P)\Delta MNP.

    Gọi I,\ J lần lượt là trung điểm của CDBD.

    Ta chứng minh được \Delta MNP = \Delta
JDI (c – c – c).

    Ta có

    S_{\Delta MNP} = S_{\Delta DIJ} =
\frac{1}{2}DI.DJ.sin\widehat{JDI}

    =
\frac{1}{4}.\frac{1}{2}DB.DC.sin\widehat{BDC} = \frac{1}{4}.S_{\Delta
DBC} = \frac{1}{4}.16 = 4

    Vậy S_{\Delta MNP} = 4.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo