Chọn mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!
Chọn mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Tìm giao tuyến hai mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:
Hình vẽ minh họa
Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là AB và CD nên giao tuyến của chúng là đường thẳng đi qua S và song song với AB và CD tức song song với BI.
Chọn khẳng định đúng
Khẳng định nào sau đây đúng khi nói về mặt phẳng?
Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.
Chọn khẳng định đúng
Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA
Vì M, N, P, Q lần lượt là trọng tâm của các tam giác
=>
Khi đó:
Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)
=>
Chứng minh tương tự ta có: GH // BD
=>
Tương tự
=> và
Vậy tứ giác MNPQ là hình bình hành.
Chọn đáp án đúng
Cho hình chóp
có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Tính giá trị biểu thức
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Xác định mệnh đề đúng
Cho ba đường thẳng
đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?
Gọi M là điểm bất kì nằm trên a.
Giả sử d là đường thẳng qua M cắt cả b và c.
Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.
Với mỗi điểm M ta được một đường thẳng d.
Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.
Xác định giao tuyến hai mặt phẳng
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Tìm mệnh đề đúng
Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.
Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.
Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.
Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”
Chọn mệnh đề sai
Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?
Mệnh đề sai: "".
Tính độ dài đoạn thẳng G1G2
Cho tứ diện
có tất cả các cạnh đều bằng
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó độ dài đoạn thẳng
bằng:
Hình vẽ minh họa:
Gọi là trung điểm của
.
Trong tam giác ta có:
(theo tính chất trọng tâm tam giác)
Tìm phát biểu mới
Trong các phát biểu sau, phát biểu nào đúng?
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.
Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.
Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.
Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.
Tìm đường thẳng song song với MG
Cho tứ diện
. Gọi
là trọng tâm của tam giác
và
là điểm trên cạnh
sao cho
. Đường thẳng
song song với
Hình vẽ minh họa
Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho nên trong mặt phẳng (BCE) ta có:
Tìm khẳng định đúng
Cho tứ diện
. Gọi
theo thứ tự là trọng tâm của tam giác
và
(tham khảo hình vẽ). Khẳng định nào sau đây đúng?

Hình vẽ minh họa
Gọi lần lượt là trung điểm của
Vì theo thứ tự là trọng tâm của tam giác
, và
nên ta có:
. Mà
(do
là đường trung bình của tam giác
).
Tính số đường thẳng qua một điểm song song với mặt phẳng
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là:
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Chọn khẳng định đúng
Chọn khẳng định đúng.
Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”
Chọn mệnh đề đúng
Cho
là hai đường thẳng phân biệt và mặt phẳng
. Chọn mệnh đề đúng?
Ta có:
sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.
sai trong trường hợp
đúng vì là hai đường thẳng phân biệt.
sai vì đường thẳng hoặc
Tính số khẳng định đúng
Cho hình chóp tứ giác
có đáy
là hình bình hành. Mặt phẳng
song song với
và
đồng thời cắt các đoạn
lần lượt tại
. Ta có các khẳng định sau:
![]()
![]()
: Tứ giác
là hình bình hành.
Có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Xét
Vì
Vì
Vì nên
đều song song với
điều này suy ra
là hình bình hành.
Vậy tất cả các khẳng định đều đúng.
Tìm giao tuyến của mặt phẳng và các mặt của hình chóp
Cho hình chóp
có đáy
là hình thang cân đáy nhỏ
. Lấy
lần lượt là trung điểm của
. Giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình:
Hình vẽ minh họa
Xét mặt phẳng (MNP) và (SBC) có
(1)
(2)
Từ (1) và (2) .
Xét tứ giác có
=> là hình thang.
Vậy giao điểm của mặt phẳng với các mặt của hình chóp
là hình thang.
Tìm đặc điểm của giao tuyến của hai mặt phẳng
Cho hình chóp
có đáy
là hình bình hành,
lần lượt là trung điểm của
. Tìm đặc điểm của giao tuyến
của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta thấy là một điểm chung của hai mặt phẳng
và
.
Do đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà (do
là đường trung bình của tam giác
) nên
.
Vậy giao tuyến của hai mặt phẳng và
là đường thẳng
đi qua
và song song với
.
Tìm mệnh đề sai
Tìm mệnh đề sai trong các mệnh đề sau?
Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.
Ghi đáp án vào ô trống
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Xác định phát biểu đúng
Trong các phát biểu sau, phát biểu nào đúng?
Hình tứ diện có 4 mặt, 6 cạnh và 4 đỉnh.
Vậy phát biểu đúng: "Hình tứ diện có 4 mặt."
Tính diện tích hình tạo bởi các giao tuyến
Cho hình lập phương
cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông
. Xác định các giao tuyến của hình lập phương
tạo với mặt phẳng
. Tính diện tích hình tạo bởi các giao tuyến.
Hình vẽ minh họa

Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.
Tứ giác là hình thang có
Ta có:
với
Thay giá trị các cạnh ta có
Ghi lời giải bài toán vào ô trống
Cho hình chóp
có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp
có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Chọn đáp án đúng
Cho hình chóp
. Trên các cạnh
và
lần lượt lấy các điểm
sao cho
. Hỏi
song song với mặt phẳng nào dưới đây?
Hình vẽ minh họa:
Ta có: là đường trung bình của tam giác ABD suy ra MN//BD
Mặt khác
Chọn phát biểu đúng
Cho hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a thì (P) và (Q) song song với nhau.
Tính tỉ số độ dài
Cho hình chóp
có đáy
là hình bình hành tâm
. Lấy điểm
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
mặt phẳng chiếu
là điểm
. Khi đó tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh họa:
Phép chiếu song song phương phương mặt phẳng chiếu
biến điểm
thành điểm
.
Do đó:
Xét tam giác ta có:
=> là trung điểm của
Từ đó suy ra
Chọn mệnh đề đúng
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.
Xác định tính đúng sai của các phát biểu
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Xác định mối quan hệ giữa hai đường thẳng
Cho hai đường thẳng
. Phép chiếu song song theo phương
, mặt phẳng chiếu
biến hai đường thẳng
thành
. Quan hệ nào giữa hai đường thẳng
không được bảo toàn trong phép chiếu song song?
Do hai đường thẳng cùng thuộc mặt phẳng
nên tính chất chéo nhau không được bảo toàn trong phép chiếu song song.
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
có tất cả các cạnh bằng
. Lấy
là trung điểm của
,
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Xác định các giao tuyến của mặt phẳng
với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh hoạ
Trong mp(ABD) kẻ
Trong mp(ABC) kẻ
Gọi P là điểm đối xứng của C qua D.
Khi đó
=> Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.
Ta lại có:
Mặt khác
Trong tam giác PAC vuông tại A ta có:
Diện tích tam giác PIM
Với
Xác định giao tuyến của hai mặt phẳng
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Chọn đáp án đúng
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Tỉ số độ dài cạnh AB và CD
Cho hình chóp
có đáy
là hình thang với đáy nhỏ
. Lấy các điểm
sao cho
,
là trọng tâm tam giác
. Để giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình bình hành thì tỉ số độ dài cạnh
bằng:
Hình biểu diễn
Ta có: với
và đi qua
, song song với
.
=> Giao tuyến của mặt phẳng với các mặt của hình chóp
là hình thang
. Tính
Để hình thang là hình bình hành thì
Xác định tính đúng sai của các phát biểu
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Chọn yếu tố xác định một mặt phẳng
Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Ghi đáp án vào ô trống
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Xác định giao tuyến của hai mặt phẳng
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Xác định giao tuyến hai mặt phẳng
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Xác định giao tuyến hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có: suy ra tứ giác AMCN là hình bình hành.
Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.
Ta có:
Mặt khác
Từ và
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: