Chọn mệnh đề đúng
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!
Chọn mệnh đề đúng
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
Xét tính đúng sai của mỗi khẳng định
Cho hình chóp
có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a)
. Đúng||Sai
b)
với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là
. Đúng||Sai
Cho hình chóp
có đáy là tam giác đều cạnh bằng
. Lấy điểm
trên cạnh
sao cho
, lấy điểm
trên cạnh
sao cho
. Các khẳng định dưới đây đúng hay sai?
a)
. Đúng||Sai
b)
với
là điểm thuộc
sao cho
. Đúng||Sai
c) Hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là tứ giác. Sai||Đúng
d) Diện tích của hình thu được khi cắt tứ diện bởi mặt phẳng qua
và song song với mp
là
. Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có nên
Mà
b) Đúng
Ta có:
Mà
c) Sai
Gọi là mặt phẳng qua
và song song với
Vì nên
Ta có:
với
Ta có:
Vậy hình thu được khi cắt tứ diện bởi mặt phẳng qua và song song với mp
là tam giác
.
d) Đúng
Thiết diện của mặt phẳng qua và song song với
là tam giác
.
Áp dụng định lý Ta-lét trong tam giác ta có:
Tương tự ta có
Diện tích tam giác đều có cạnh bằng
là:
.
Tìm giao tuyến của hai mặt phẳng (MSB) và (SAC)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:
Hình vẽ minh họa
Gọi I là giao điểm của AC và BM
Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)
=> Giao tuyến cần tìm chính là đường thẳng SI.
Xác định thiết diện
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
Hình vẽ minh họa

Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC
=>
2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung
=> Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.
Vậy
Ta có
Mặt khác
Vậy thiết diện là hình thang cân IJKH.
Chọn phát biểu đúng
Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.
=> AC và A’C’ cắt nhau.
Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).
Chọn mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Chọn mệnh đề sai
Trong các mệnh đề sau mệnh đề nào sai?
Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.
Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.
Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.
Xác định các giao tuyến của tứ diện và mặt phẳng cho trước
Cho tứ diện
. Lấy
sao cho
. Giả sử
là mặt phẳng qua
song song với
. Xác định các giao tuyến của tứ diện
và mặt phẳng
. Hình tạo bởi các giao tuyến đó là hình gì?
Giả sử cắt các mặt của tứ diện
và
theo hai giao tuyến
và
.
Ta có:
Theo định lí Ta – lét ta có:
=> là hình bình hành
Do đó hình tạo bởi các giao tuyến của tứ diện và mặt phẳng
là hình bình hành
.
Chọn mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Tìm giao tuyến giữa hai mặt phẳng
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa

Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
Mà (ABCD là hình bình hành)
=>
Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung
=> Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD
Hay
Xét tính đúng sai của các khẳng định
Cho tứ diện
. Các điểm
lần lượt là trung điểm
. Các điểm
lần lượt là trọng tâm các tam giác
. Các mệnh đề sau đúng hay sai?
a) Đường thẳng
chéo với đường thẳng
Sai||Đúng
b) Đường thẳng
chéo với đường thẳng
Đúng||Sai
c) Đường thẳng
chéo với đường thẳng
Sai||Đúng
d) Đường thẳng
chéo với đường thẳng
Sai||Đúng
Cho tứ diện
. Các điểm
lần lượt là trung điểm
. Các điểm
lần lượt là trọng tâm các tam giác
. Các mệnh đề sau đúng hay sai?
a) Đường thẳng
chéo với đường thẳng
Sai||Đúng
b) Đường thẳng
chéo với đường thẳng
Đúng||Sai
c) Đường thẳng
chéo với đường thẳng
Sai||Đúng
d) Đường thẳng
chéo với đường thẳng
Sai||Đúng
Hình vẽ minh họa
Do
(Định lý Talet)
Xét tam giác có:
(do
là đường trung bình của tam giác)
Lại có:
Vậy và
chéo nhau.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Chọn khẳng định đúng
Cho ba mặt phẳng
lần lượt giao nhau theo các giao tuyến phân biệt
. Khẳng định nào dưới đây đúng?
Theo định lí về giao tuyến của ba mặt phẳng thì đôi một song song hoặc đồng quy.
Ghi đáp án vào ô trống
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Xác định thiết diện
Thiết diện của hình chóp
khi cắt bởi mặt phẳng
tùy ý thể là:
Vì số mặt của hình chóp là 5 nên thiết diện tối đa chỉ có 5 cạnh.
=> Không thể là lục giác.
Xác định thiết diện
Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng
đi qua M, song song với AB và AD. Thiết diện
với tứ diện ABCD là hình gì?
Hình vẽ minh họa

=> Giao tuyến của
với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.
=> Giao tuyến của
với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.
Vậy thiết diện là tam giác MNP.
Chọn phương án thích hợp
Cho hình chóp
có đáy
là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?
Hình vẽ minh họa
Quan sát hình vẽ ta thấy kết quả cần tìm là: và BD.
Tìm hình chiếu của điểm P qua phép chiếu song song
Cho hình lăng trụ tam giác
, tâm của các mặt bên
lần lượt là
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Gọi là ảnh của
qua phép chiếu song song phương
lên mặt phẳng
.
Ta có và
.
Mà là giao tuyến của hai mặt phẳng
và
nên
.
Lại có là trung điểm của
nên
là đường trung bình của tam giác
=> là trung điểm của
.
Xét tính đúng sai của mỗi khẳng định
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Điền nội dung lời giải vào chỗ trống
Cho hình chóp
có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Cho hình chóp
có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Tính giá trị biểu thức
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Tìm khẳng định đúng
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
“Nếu và
thì
đồng phẳng.” sai vì có thể chéo nhau.
“Nếu và
cắt
thì
cắt
.” sai vì có thể nằm trên
“Nếu và
thì
.” sai vì có thể nằm trên
.
Ghi đáp án vào ô trống
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật
có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Tính diện tích hình tạo bởi các giao tuyến
Cho tứ diện
có tất cả các cạnh bằng
. Lấy
là trung điểm của
,
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Xác định các giao tuyến của mặt phẳng
với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh hoạ
Trong mp(ABD) kẻ
Trong mp(ABC) kẻ
Gọi P là điểm đối xứng của C qua D.
Khi đó
=> Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.
Ta lại có:
Mặt khác
Trong tam giác PAC vuông tại A ta có:
Diện tích tam giác PIM
Với
Chọn khẳng định sai
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Tìm mệnh đề sai
Cho hình hộp
. Xác định mệnh đề sai?
Hình vẽ minh họa
Theo bài ra ta có:
Mặt khác
=> là mệnh đề sai.
Giao tuyến của hai mặt phẳng (SMN) và (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).
Ta có là tâm của hình hình hành
=> (do M, N lần lượt là trung điểm của AD và BC).
Trong mặt phẳng (ABCD), ta có:
=> O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).
Vậy
Tìm giao tuyến hai mặt phẳng
Cho tứ diện
. Gọi
tương ứng là hai điểm bất kì trên các đoạn thẳng
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có:
Tỉ số độ dài cạnh AB và CD
Cho hình chóp
có đáy
là hình thang với đáy nhỏ
. Lấy các điểm
sao cho
,
là trọng tâm tam giác
. Để giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình bình hành thì tỉ số độ dài cạnh
bằng:
Hình biểu diễn
Ta có: với
và đi qua
, song song với
.
=> Giao tuyến của mặt phẳng với các mặt của hình chóp
là hình thang
. Tính
Để hình thang là hình bình hành thì
Chọn khẳng định đúng
Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.
Theo lý thuyết ta có: mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó a // b.
Vậy a và b không có điểm chung nào.
Chọn kết luận đúng
Cho hình chóp
có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Tìm giao tuyến của MA và SD
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.
Hình vẽ minh họa:

Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:
IJ là đường trung bình hình thang ABCD => IJ // AB
Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung
=> Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.
Đường thẳng này cắt SA tại M và cắt SB tại N.
Tính số cạnh của bát giác
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Chọn mệnh đề sai
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Tìm câu đúng
Khẳng định nào sau đây là đúng?
Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.
Chọn khẳng định đúng
Chọn khẳng định đúng trong các khẳng định sau.
Khẳng định đúng là:
Nếu thì tồn tại trong
đường thẳng
để
.
Phát biểu nào sau đây là đúng
Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.
Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.
Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.
Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).
Chọn mệnh đề sai
Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?
Mệnh đề sai: "".
Xác định mệnh đề đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.
Chọn đáp án đúng
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: