Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 4: Quan hệ song song trong không gian nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.

  • Câu 2: Thông hiểu

    Tìm giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

  • Câu 3: Thông hiểu

    Chọn khẳng định đúng

    Khẳng định nào sau đây đúng khi nói về mặt phẳng?

    Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.

  • Câu 4: Vận dụng

    Chọn khẳng định đúng

    Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA

    Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

    => \frac{{SM}}{{SF}} = \frac{{SN}}{{SG}} = \frac{{SP}}{{SH}} = \frac{{SQ}}{{SI}} = \frac{2}{3}

    Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI

    Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)

    =>  FI // BD

    Chứng minh tương tự ta có: GH // BD

    =>  FI // GH // BD

    Tương tự FG // IH // AC

    => MQ // NP // FI // GHMN // PQ // FG // IH

    Vậy tứ giác MNPQ là hình bình hành.

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

  • Câu 6: Vận dụng cao

    Tính giá trị biểu thức

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 7: Thông hiểu

    Xác định mệnh đề đúng

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 8: Thông hiểu

    Xác định giao tuyến hai mặt phẳng

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của ADACG là trọng tâm của tam giác BCD. Khi đó giao tuyến của mặt phẳng (IJG) và mặt phẳng (BCD) là đường thẳng đi qua điểm

    Hình vẽ minh họa

    Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.

    Gọi d = (GIJ) \cap (BCD)

    Ta có: \left\{ \begin{matrix}
G \in (GIJ);G \in (BCD) \\
IJ \subset (GIJ);CD \subset (BCD) \\
IJ//CD \\
\end{matrix} ight.

    Suy ra d đi qua G và song song với CD,.

  • Câu 9: Nhận biết

    Tìm mệnh đề đúng

    Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.

    Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.

    Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.

    Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”

  • Câu 10: Nhận biết

    Chọn mệnh đề sai

    Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?

     Mệnh đề sai: "a //(Q)".

  • Câu 11: Vận dụng

    Tính độ dài đoạn thẳng G1G2

    Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi G_{1};G_{2} lần lượt là trọng tâm của tam giác BCDACD. Khi đó độ dài đoạn thẳng G_{1}G_{2} bằng:

    Hình vẽ minh họa:

    Gọi I là trung điểm của CD.

    Trong tam giác IAB ta có:

    \frac{IG_{1}}{IB} = \frac{IG_{2}}{IA} =
\frac{1}{3} (theo tính chất trọng tâm tam giác)

    \Rightarrow \frac{G_{1}G_{2}}{AB} =
\frac{1}{3} \Rightarrow G_{1}G_{2} = \frac{a}{3}

  • Câu 12: Nhận biết

    Tìm phát biểu mới

    Trong các phát biểu sau, phát biểu nào đúng?

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.

    Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.

    Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.

  • Câu 13: Thông hiểu

    Tìm đường thẳng song song với MG

    Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABDM là điểm trên cạnh BC sao cho BM
= 2MC. Đường thẳng MG song song với

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho BM =
2MC nên trong mặt phẳng (BCE) ta có:

    \frac{BG}{BE} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//CE \subset
(ACD)

    \Rightarrow MG//(ACD)

  • Câu 14: Thông hiểu

    Tìm khẳng định đúng

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 15: Nhận biết

    Tính số đường thẳng qua một điểm song song với mặt phẳng

    Cho mặt phẳng (P) và điểm A không thuộc mặt phẳng (P). Số đường thẳng đi qua A và song song với (P) là:

    Có vô số đường thẳng đi qua  A  và song song với  (P)  với điểm  A  không thuộc mặt phẳng  (P).

  • Câu 16: Nhận biết

    Chọn khẳng định đúng

    Chọn khẳng định đúng.

    Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”

  • Câu 17: Thông hiểu

    Chọn mệnh đề đúng

    Cho m,n là hai đường thẳng phân biệt và mặt phẳng (\alpha). Chọn mệnh đề đúng?

    Ta có:

    \left\{ \begin{matrix}
m ⊄ (\alpha) \\
m\bot n \\
n \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.

    \left\{ \begin{matrix}
m\bot n \\
n\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai trong trường hợp

    \left\{ \begin{matrix}
m \cap (\alpha) = H \\
n \cap (\alpha) = H \\
\end{matrix} ight.\  \Rightarrow m \cap n = H đúng vì là hai đường thẳng phân biệt.

    \left\{ \begin{matrix}
m\bot n \\
m \cap (\alpha) = P \\
\end{matrix} ight.\  \Rightarrow n \cap (\alpha) = P sai vì đường thẳng hoặc

  • Câu 18: Thông hiểu

    Tính số khẳng định đúng

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 19: Vận dụng

    Tìm giao tuyến của mặt phẳng và các mặt của hình chóp

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân đáy nhỏ BC. Lấy M,N,P lần lượt là trung điểm của AB,DC,SB. Giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình:

    Hình vẽ minh họa

    Xét mặt phẳng (MNP) và (SBC) có

    \left\{ \begin{matrix}\begin{matrix}P \in (MNP) \cap (SCD) \\MN \subset (MNP) \\BC \subset (SBC) \\\end{matrix} \\MN//BC \\\end{matrix} ight. (1)

    = > (MNP) \cap (SCD) = PQ//BC,(Q \inSD) (2)

    Từ (1) và (2) = > MN//BC.

    Xét tứ giác MNQPMN//BC

    => MNQP là hình thang.

    Vậy giao điểm của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình thang.

  • Câu 20: Thông hiểu

    Tìm đặc điểm của giao tuyến của hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 21: Nhận biết

    Tìm mệnh đề sai

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 22: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 23: Thông hiểu

    Xác định phát biểu đúng

    Trong các phát biểu sau, phát biểu nào đúng?

    Hình tứ diện có 4 mặt, 6 cạnh và 4 đỉnh.

    Vậy phát biểu đúng: "Hình tứ diện có 4 mặt."

  • Câu 24: Vận dụng

    Tính diện tích hình tạo bởi các giao tuyến

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 25: Vận dụng

    Ghi lời giải bài toán vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Nhận biết

    Chọn đáp án đúng

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 27: Nhận biết

    Chọn phát biểu đúng

    Cho hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a thì (P) và (Q) song song với nhau.

     

  • Câu 28: Vận dụng

    Tính tỉ số độ dài

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 29: Nhận biết

    Chọn mệnh đề đúng

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.

    Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.

  • Câu 30: Thông hiểu

    Xác định tính đúng sai của các phát biểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 31: Nhận biết

    Xác định mối quan hệ giữa hai đường thẳng

    Cho hai đường thẳng a,b. Phép chiếu song song theo phương l , mặt phẳng chiếu (\alpha) biến hai đường thẳng a,b thành a',b'. Quan hệ nào giữa hai đường thẳng a,b không được bảo toàn trong phép chiếu song song?

    Do hai đường thẳng a',b' cùng thuộc mặt phẳng (\alpha) nên tính chất chéo nhau không được bảo toàn trong phép chiếu song song.

  • Câu 32: Vận dụng cao

    Tính diện tích hình tạo bởi các giao tuyến

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 33: Thông hiểu

    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 34: Thông hiểu

    Chọn đáp án đúng

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 35: Vận dụng cao

    Tỉ số độ dài cạnh AB và CD

    Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy nhỏ CD. Lấy các điểm I \in AD;J \in BC sao cho IA = ID;JB = JC, G là trọng tâm tam giác SAB. Để giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình bình hành thì tỉ số độ dài cạnh \frac{AB}{CD} bằng:

    Hình biểu diễn

    Ta có: (IJG) \cap (SAB) = EF với E \in SA,F \in SB và đi qua G, song song với AB//IJ.

    => Giao tuyến của mặt phẳng (IJG) với các mặt của hình chóp S.ABCD là hình thang EFJI. Tính EF = \frac{2}{3}AB;IJ = \frac{1}{2}(AB +CD)

    Để hình thang EFJI là hình bình hành thì

    \Leftrightarrow EF = IJ

    \Leftrightarrow \frac{2}{3}AB =\frac{1}{2}(AB + CD)

    \Leftrightarrow AB = 3CD

    \Leftrightarrow \frac{AB}{CD} =3

  • Câu 36: Thông hiểu

    Xác định tính đúng sai của các phát biểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 37: Nhận biết

    Chọn yếu tố xác định một mặt phẳng

    Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

  • Câu 38: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 39: Thông hiểu

    Xác định giao tuyến của hai mặt phẳng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 40: Thông hiểu

    Xác định giao tuyến hai mặt phẳng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo