Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 8: Các quy tắc tính xác suất nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tính số cách sắp xếp 4 người vào bàn tròn

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 2: Thông hiểu

    Tính các số có thể tạo thành

    Cho tập hợp A =
\left\{ 1;2;3;4 ight\}. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?

    Ta có:

    Số có 1 chữ số có 4 số.

    Số có 2 chữ số có A_{4}^{2} = 12 số.

    Số có 3 chữ số có A_{4}^{3} = 24 số.

    Số có 4 chữ số có P_{4} = 24 số.

    Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Ba bạn A, B, C độc lập với nhau thi ném phi tiêu vào cùng một bia. Biết xác xuất ném trúng của A, B, C lần lượt là 0,2;0,50,8. Tính xác suất để có ít nhất một người ném trúng bia?

    Gọi A, B, C tương ứng là biến cố A ném trúng bia, B ném trúng bia và C ném trúng bia

    A, B, C là các biến cố độc lập. Do đó A, B, C là các biến cố đôi một độc lập

    Xác suất để cả ba người đều không ném trúng là:

    P\left( \overline{ABC} ight) = P\left(
\overline{A} ight).P\left( \overline{B} ight).P\left( \overline{C}
ight)

    = (1 - 0,2)(1 - 0,5)(1 - 0,8) =
0,08

  • Câu 4: Nhận biết

    Tính số các số được tạo thành

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 5: Thông hiểu

    Tính xác suất của biến cố A

    Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có: 

    Biến cố A “ít nhất một lần xuất hiện mặt sấp”

    => Biến cố \overline A "không xuất hiện mặt sấp”

     \overline A  = \left\{ {\left( {N;N;N} ight)} ight\}

    => n\left( {\overline A } ight) = 1 \Rightarrow P\left( {\overline A } ight) = \frac{1}{8}

    => P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 6: Thông hiểu

    Tính số các số tự nhiên được tạo thành

    Cho A = \{0, 1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?

     Số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số cần tìm chia hết cho 5 => c ∈ {0; 5}

    => Có 2 cách chọn c

    Số cách chọn a là 5 cách

    Số cách chọn b là 6 cách

    => Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số

  • Câu 7: Nhận biết

    Tính xác suất để Minh tô sai cả 5 câu

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 8: Thông hiểu

    Tính xác suất để lấy sách theo yêu cầu

    Một kệ sách có 15 quyển sách (4 quyển sách Toán khác nhau, 5 quyển sách Lý khác nhau và 6 quyển sách Văn khác nhau). Người ta lấy ngẫu nhiên 4 quyển sách từ kệ. Tính xác suất để số sách lấy ra không đủ ba môn.

    Số phần tử của không gian mẫu là |\Omega|
= C_{15}^{4} = 1365

    Gọi A là biến cố “Lấy ra 4 quyển sách có đủ 3 môn”.

    Trường hợp 1: 2 sách Toán, 1 sách Lý, 1 sách Văn có C_{4}^{2}.C_{5}^{1}.C_{6}^{1} cách lấy.

    Trường hợp 2: 1 sách Toán, 2 sách Lý, 1 sách Văn có C_{4}^{1}.C_{5}^{2}.C_{6}^{1}cách lấy.

    Trường hợp 3: 1 sách Toán, 1 sách Lý, 2 sách Văn có C_{4}^{1}.C_{5}^{1}.C_{6}^{2} cách lấy.

    Vậy kết quả thuận lợi cho biến cố A là C_{4}^{2}.C_{5}^{1}.C_{6}^{1} +
C_{4}^{1}.C_{5}^{2}.C_{6}^{1} + C_{4}^{1}.C_{5}^{1}.C_{6}^{2} =
720

    Xác suất của biến cố A là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} =
\frac{720}{1365}

    Xác suất cần tìm là: P\left( \overline{A}
ight) = 1 - P(A) = 1 - \frac{720}{1365} = \frac{43}{91}

  • Câu 9: Thông hiểu

    Tính xác suất của biến cố

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là (1;1;1),(2;2;2),(3;3;3)

    Vậy xác suất của biến cố này là \frac{3}{27} = \frac{1}{9}

  • Câu 10: Vận dụng cao

    Ghi đáp án vào ô trống

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 11: Nhận biết

    Số các chữ số được lập thành

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 12: Nhận biết

    Tính xác suất thực nghiệm mặt ngửa

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 13: Vận dụng

    Số các số có 10 chữ số được tạo thành

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 14: Thông hiểu

    Tính xác suất của biến cố

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.

    Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn đều là nữ"

    => n\left( A ight) = C_3^2 = 3

    => Xác suất sao cho 2 người được chọn đều là nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{3}{{45}} = \frac{1}{{15}}

  • Câu 15: Thông hiểu

    Chọn mô tả biến cố đúng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 16: Thông hiểu

    Tính số phần tử của biến cố B

    Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?

    Ta có: n(\Omega) = 7! = 5040

    Biến cố B là hai quyển sách cùng loại nằm cạnh nhau

    \Rightarrow \overline{B} là biến cố các quyển sách không cùng loại nằm cạnh nhau.

    Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.

    \Rightarrow n\left( \overline{B} ight)
= 3!.4! = 144

    \Rightarrow n(B) = n(\Omega) - n\left(
\overline{B} ight) = 5040 - 144 = 4896

  • Câu 17: Thông hiểu

    Chọn kết quả đúng

    Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:

    Bảng chữ cái Tiếng Anh có 26 chữ cái.

    Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: C_{26}^{5} = 65780 cách chọn.

  • Câu 18: Thông hiểu

    Xác định số cách chọn học sinh

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

  • Câu 19: Thông hiểu

    Tính xác suất của biến cố

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để tổng ba số được chọn là số lẻ?

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi B là biến cố “Tổng ba số được chọn là số lẻ”

    Tổng ba số được chọn tạo thành số lẻ thì ba số được chọn cần thỏa điều kiện: 3 số đều là số lẻ, hai số chẵn và 1 số lẻ.

    TH1: 3 số đều là số lẻ: C_{6}^{3} =
20

    TH2: số cách chọn hai số chẵn và 1 số lẻ là C_{6}^{1}.C_{5}^{2} = 60

    Suy ra ta có n(B) = 20 + 60 =
80

    Vậy xác suất cần tìm là: P(B) =
\frac{80}{165} = \frac{16}{33}

  • Câu 20: Vận dụng

    Hoàn thành mệnh đề

    Cho hai biến cố A và B có P\left( A ight) = \frac{1}{3},P\left( B ight) = \frac{1}{4},P\left( {A \cup B} ight) = \frac{1}{2} ta kết luận hai biến cố A và B là:

    Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)

    Suy ra P(A) + P(B) ≠ P(A ∪ B)

    => Hai biến cố A và B không xung khắc

    Áp dụng công thức xác suất tổng hai biến cố ta có: 

    \begin{matrix}  P\left( A ight) + P\left( B ight) - P\left( {AB} ight) = P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left[ {P\left( A ight) + P\left( B ight)} ight] - P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left( {\dfrac{1}{3} + \dfrac{1}{4}} ight) - \dfrac{1}{2} = \dfrac{1}{2} \hfill \\ \end{matrix}

    P\left( A ight).P\left( B ight) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} = P\left( {AB} ight)

    => Hai biến cố A và B là hai biến cố độc lập.

  • Câu 21: Nhận biết

    Tìm khẳng định đúng

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 22: Thông hiểu

    Tìm đáp án đúng

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?

    Số tự nhiên có 3 chữ số đôi một khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Do số cần tìm chia hết cho 5 => c = 5

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    => Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: 1 . 4 . 3 = 12 số

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 24: Vận dụng

    Tính xác suất để chọn được số x > 2020

    Cho các chữ số 0;1;2;3;4;5;6;7. Giả sử tập hợp M là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số x \in M. Xác suất để chọn được x > 2020?

    Gọi số phần tử của tập hợp M là n(M) =
7.A_{7}^{3} = 1470

    Số phần tử của không gian mẫu là: n(\Omega) = C_{1470}^{1} = 1470

    Gọi A là biến cố chọn được số lớn hơn 2020.

    Giả sử số tự nhiên có 4 chữ số là x =
\overline{abcd} \in M ta có: x >
2020 nên ta có các trường hợp sau:

    TH1: a = 2;b = 0 \Rightarrow c \in
\left\{ 3;4;5;6;7 ight\} nên c có 5 cách chọn và d có 5 cách chọn.

    Do đó trường hợp này có: 1.1.5.5 =
25 số.

    TH2: a = 2;b \in \left\{ 1;3;4;5;6;7
ight\} thì \overline{cd}A_{6}^{2} cách chọn và sắp xếp.

    Do đó trường hợp này có 1.6.A_{6}^{2} =
180 số.

    TH3: a \in \left\{ 3;4;5;6;7
ight\} thì \overline{bcd}A_{7}^{3} cách chọn và sắp xếp.

    Do đó trường hợp này có 5.A_{7}^{3} =
1050 số.

    Vậy xác suất cần tính là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1255}{1470} =
\frac{251}{294}.

  • Câu 25: Nhận biết

    Chọn kết quả chính xác

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 26: Thông hiểu

    Tính xác suất P

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn không có nữ"

    => n\left( A ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{21}{{45}} = \frac{7}{{15}}

  • Câu 27: Nhận biết

    Tính số cách đi từ tỉnh A đến tỉnh B

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 28: Vận dụng

    Tính các số tự nhiên lẻ được tạo thành

    Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số 0;1;2;3;4;5;6;7 mà chữ số đứng ở vị trí thứ ba luôn chia hết cho 6?

    Gọi số cần tìm có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}}

    Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.

    Suy ra \left\{ \begin{matrix}
a_{6} \in \left\{ 1;3;5;7 ight\} \\
a_{3} \in \left\{ 0;6 ight\} \\
\end{matrix} ight.

    TH1: Với a_{3} = 0 chữ số a_{6} có 4 cách chọn, a_{1} có 6 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.6.A_{6}^{3} số.

    TH2: Với a_{3} = 6 chữ số a_{6} có 4 cách chọn, a_{1} có 5 cách chọn, ba chữ số còn lại có A_{5}^{3} cách chọn.

    Do đó 4.5.A_{6}^{3} số.

    Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: 4.6.A_{6}^{3} + 4.5.A_{6}^{3} = 2640.

  • Câu 29: Nhận biết

    Xác định cặp biến cố không đối nhau

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 30: Nhận biết

    Chọn khẳng định đúng

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 31: Thông hiểu

    Điền đáp án vào ô trống

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    TH1: A thuộc bài, B không thuộc bài, C thuộc bài có xác suất là:

    P_{1} = 0,9.(1 - 0,7).0,8 =
0,216

    TH2: A không thuộc bài, B thuộc bài, C thuộc bài có xác suất là:

    P_{2} = (1 - 0,9).0,7.0,8 =
0,056

    TH2: A thuộc bài, B thuộc bài, C không thuộc bài có xác suất là:

    P_{3} = 0,9.0,7.(1 - 0,8) =
0,126

    Vậy xác suất cần tìm là: P = 0,216 +
0,056 + 0,126 = 0,398

  • Câu 32: Vận dụng

    Xác định kết luận đúng, kết luận sai

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Đáp án là:

    Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:

    a) Xác suất để lấy được chỉ màu đỏ \frac{1}{3003} Đúng||Sai

    b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai

    c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng \frac{53}{429} Sai||Đúng

    d) Xác suất lấy các viên bi có đủ ba màu \frac{310}{429} Sai||Đúng

    Số cách chọn 5 viên bi trong 15 viên bi là n(\Omega) = C_{15}^{5} = 3003.

    Gọi A: “5 viên bi lấy được có đủ 3 màu "

    Gọi \overline{A} : " 5 viên bi lấy được có không đủ 3 màu "

    Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp

    + 5 viên màu đỏ có 1 cách

    + 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có C_{6}^{5} = 6 cách.

    Chỉ có xanh và đỏ có C_{4}^{4} \cdot
C_{5}^{1} + C_{4}^{3} \cdot C_{5}^{2} + C_{4}^{2} \cdot C_{5}^{3} +
C_{4}^{1}C_{5}^{4} = 125.

    Chỉ có xanh và vàng có C_{4}^{4} \cdot
C_{6}^{1} + C_{4}^{3} \cdot C_{6}^{2} + C_{4}^{2} \cdot C_{6}^{3} +
C_{4}^{1}C_{6}^{4} = 246.

    Chỉ có đỏ và vàng có C_{5}^{4} \cdot
C_{6}^{1} + C_{5}^{3} \cdot C_{6}^{2} + C_{5}^{2} \cdot C_{6}^{3} +
C_{5}^{1}C_{6}^{4} = 455.

    Vậy n(\bar{A}) = 833 \Rightarrow n(\Omega) -
n(\bar{A}) = 2170 \Rightarrow p(A) = \frac{n(A)}{n(\Omega)} =
\frac{310}{429}.

  • Câu 33: Vận dụng cao

    Điền đáp án vào ô trống

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 34: Vận dụng

    Tính xác suất P

    Trong một trận giao hữu, hai cầu thủ bóng đá A và B thực hiện đá luân lưu. Biết xác suất để cầu thủ B không đá trúng lưới là \frac{2}{5}, xác suất để cầu thủ A đá trúng lưới là \frac{3}{10}. Tính xác suất để có đúng một cầu thủ đá trúng lưới?

    Gọi X là biến cố cầu thủ A đá trúng lưới và Y là biến cố cầu thủ B đá trúng lưới

    Suy ra biến cố có đúng một cầu thủ đá trúng lưới là X\overline{Y} \cup \overline{X}Y

    X\overline{Y};\overline{X}Y là hai biến cố xung khắc nên P\left(
X\overline{Y} \cup \overline{X}Y ight) = P\left( X\overline{Y} ight)
+ P\left( \overline{X}Y ight)

    \overline{X};Y là hai biến cố độc lập nên P\left( X\overline{Y} ight) =
P(X).P\left( \overline{Y} ight) = 0,3.0,4 = 0,12

    Tương tự P\left( \overline{X}Y ight) =
P\left( \overline{X} ight).P(Y) = (1 - 0,3).(1 - 0,4) =
0,42

    Vậy P\left( X\overline{Y} \cup
\overline{X}Y ight) = P\left( X\overline{Y} ight) + P\left(
\overline{X}Y ight) = 0,54

  • Câu 35: Nhận biết

    Tìm biến cố xung khắc của biến cố C

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 36: Nhận biết

    Số cách chọn 1 học sinh nam và 2 học sinh nữ

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?

    Số cách chọn 1 học sinh nam là: C_{25}^1 = 25 cách

    Số cách chọn 2 học sinh nữ là: C_{15}^2 = 105 cách

    Áp dụng quy tắc nhân ta có:

    Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:

    C_{25}^1.C_{15}^2 = 25.105 = 2625 cách

  • Câu 37: Thông hiểu

    Chọn đáp án đúng

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm, mỗi câu trả lời sai bị trừ 0,1 điểm. Một học sinh đã tô câu trả lời ngẫu nhiên cho cả 50 câu hỏi. Hỏi xác suất để học sinh đó đạt 4 điểm trong bài thi trên là bao nhiêu?

    Để đạt được điểm 4 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 4 điểm là: C_{50}^{30}.(0,25)^{30}.(0,75)^{20} \approx
1,3.10^{- 7}.

  • Câu 38: Thông hiểu

    Chọn đáp án đúng

    Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?

    Giả sử các ghế ngồi đánh số từ 1 đến 8.

    Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).

    Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.

    Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.

    Vậy có 3! · 4! = 144 cách.

  • Câu 39: Thông hiểu

    Số các số có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 40: Nhận biết

    Xác định khẳng định sai

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo