Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính số nhóm dữ liệu tối đa

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Cho mẫu số liệu sau và cho biết cân nặng của học sinh lớp 11 trong 1 lớp:

    Cân nặng

    Dưới 55

    Từ 55 đến 65

    Trên 65

    Số học sinh

    20

    15

    2

    Số học sinh của hợp đó là bao nhiêu?

    Số học sinh của lớp đó là: 20 + 15 + 2 =
37.

  • Câu 3: Vận dụng

    Xác định tần suất nhóm

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 4: Thông hiểu

    Tính giá trị tứ phân vị thứ nhất

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tính giá trị tứ phân vị thứ nhất.

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 45 \\m = 30,f = 30,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -30}{30}.10 = 25

  • Câu 5: Nhận biết

    Chọn đáp án đúng

    Một nhóm 11 học sinh tham gia một kỳ thi. Số điểm thi của 11 học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10): 0;0;3;6;6;7;7;8;8;8;9. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{0.2 + 3.1 + 6.2 +
7.2 + 8.3 + 9}{11} = 5,64

  • Câu 6: Vận dụng

    Xét tính đúng sai của mỗi kết luận

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    Đáp án là:

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    a) Ta có cỡ mẫu n = 4 + 19 + 6 + 2 + 3 +
1 = 35. Vậy đáp án a) đúng.

    b) Gọi x_{1},x_{2},...,x_{35} được sắp xếp theo thứ tự không giảm.

    Khi đó, trung vị là x_{18}. Do x_{18} thuộc nhóm \lbrack 20;30) nên nhóm này chứa trung vị.

    Suy ra p = 2, a_{2} = 20, a_{3} = 30, m_{2} = 19, m_{1} = 4, a_{3} - a_{2} = 10.

    M_{e} = a_{p} + \dfrac{\dfrac{n}{2} -\left( m_{1} + ... + m_{p - 1} ight)}{m_{p}}.\left( a_{p + 1} - a_{p}ight)

    = 20 + \dfrac{\dfrac{35}{2} - 4}{19}.10 =\frac{515}{19} \approx 27,1.

    Vậy đáp án b) sai.

    c) Số trung bình của mẫu số liệu là

    \overline{x} = \frac{15 \times 4 + 25
\times 19 + 35 \times 6 + 45 \times 2 + 55 \times 3 + 65}{35} =
\frac{213}{7} \approx 30,4.

    Vậy đáp án c) sai.

    d) Điểm ngưỡng để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

    Cỡ mẫu n = 35

    Tứ phân vị thứ ba Q_{3}x_{27}x_{27} thuộc nhóm [30;40) nên nhóm này chứa Q_{3}.

    Do đó, \left\{ \begin{matrix}
p = 3,a_{3} = 30,m_{3} = 6 \\
m_{1} + m_{2} = 4 + 19 = 23 \\
a_{4} - a_{3} = 10 \\
\end{matrix} ight. và ta có:

    Q_{3} = 30 + \dfrac{\dfrac{3 \times 35}{4}- 23}{6}.10 = 35,42.

    Vậy để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.

    Vậy đáp án d) đúng.

  • Câu 7: Vận dụng

    Tính giá trị biểu thức T = 2x – y

    Cho bảng dữ liệu dưới đây:

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow T = 2x - y = 6

  • Câu 8: Thông hiểu

    Tìm giá trị tứ phân vị thứ nhất

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \frac{5 - 2}{7}.2 =\frac{55}{7}

  • Câu 9: Thông hiểu

    Tìm khoảng biến thiên của dãy dữ liệu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 10: Thông hiểu

    Tìm tứ phân vị thứ nhất

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    [95; 105)

    9

    9

    [105; 115)

    13

    22

    [115; 125)

    26

    48

    [125; 135)

    30

    78

    [135; 145)

    12

    90

    [145; 155)

    10

    100

    Tổng

    N = 100

     

    Ta có: N = 100 \Rightarrow \frac{N}{4} =\frac{100}{4} = 25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

    Khi đó: \left\{ \begin{matrix}l = 115;\dfrac{N}{4} = 25;m = 22 \\f = 26,d = 125 - 115 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 115 + \frac{25 -22}{26}.10 \approx 116,15

  • Câu 11: Nhận biết

    Tính giá trị đại diện của nhóm

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm \lbrack
40;60) là:

    Giá trị đại diện của nhóm \lbrack
40;60) là: c = \frac{40 + 60}{2} =
50

  • Câu 12: Thông hiểu

    Ghi đáp án vào ô trống

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Đáp án là:

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Ta có 100 học sinh tham gia đo chiều cao khi đó:

    5 + 18 + x + 26 + y + 3 = 100

    => x + y = 48 (*)

    Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)

    Từ (*) và (**) ta có hệ phương trình: \left\{ \begin{matrix}x + y = 48 \\x = 5y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 40 \\y = 5 \\\end{matrix} ight.

  • Câu 13: Nhận biết

    Xác định nhóm chứa trung vị

    Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:

    Thời gian (phút)

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số học sinh

    7

    13

    9

    18

    22

    6

    Nhóm chứa trung vị là:

    Cỡ mẫu của bảng số liệu này là n =
75, nên nhóm chứa trung vị là nhóm chứa giá trị thứ 38, suy ra đó là nhóm \lbrack 30;40)

  • Câu 14: Thông hiểu

    Tìm trung vị của mẫu số liệu

    Tìm trung vị của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Ta có:

    Thời gian (s)

    Số vận động viên (người)

    Tần số tích lũy

    (50,5; 55,5]

    2

    2

    (55,5; 60,5]

    7

    9

    (60,5; 65,5]

    8

    17

    (65,5; 70,5]

    4

    21

    Tổng

    N = 21

     

    Ta có: \frac{N}{2} = \frac{21}{2} =10,5

    => Nhóm chứa trung vị là (60,5; 65,5]

    Khi đó: \left\{ \begin{matrix}l = 60,5,\dfrac{N}{2} = 10,5 \\m = 9,f = 8,d = 65,5 - 60,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 60,5 + \frac{10,5 -9}{8}.5 \approx 61,4

  • Câu 15: Thông hiểu

    Tính tứ phân vị thứ ba

    Cho bảng dữ liệu như sau:

    Khong thi gian hc (giờ)

    [8; 18)

    [18; 28)

    [28; 38)

    [38; 48)

    [48; 58)

    [58; 68)

    [68; 78)

    Số học sinh

    2

    3

    14

    8

    7

    8

    2

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Ta có:

    Khong thi gian hc (giờ)

    [8; 18)

    [18; 28)

    [28; 38)

    [38; 48)

    [48; 58)

    [58; 68)

    [68; 78)

    Số học sinh

    2

    3

    14

    8

    7

    8

    2

    Tần số tích lũy

    2

    5

    19

    27

    34

    42

    44

    Ta có: \frac{3N}{4} = \frac{3.44}{4} =33

    => Nhóm chứa Q_{3}[48; 58) (vì 33 nằm giữa các tần số tích lũy 27 và 34).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 48;m = 27,f = 7;c = 58 -48 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 48 + \dfrac{33 - 27}{7}.10 \approx56,6

  • Câu 16: Nhận biết

    Tìm số nhóm số liệu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định số nhóm trong mẫu dữ liệu ghép nhóm trên?

    Mẫu dữ liệu ghép nhóm trên có 5 nhóm.

  • Câu 17: Vận dụng

    Tính trung vị của mẫu số liệu

    Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:

    Tuổi

    Nhỏ hơn 10

    Nhỏ hơn 20

    Nhỏ hơn 30

    Nhỏ hơn 40

    Nhỏ hơn 50

    Nhỏ hơn 60

    Nhỏ hơn 70

    Nhỏ hơn 80

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi (năm)

    (0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

     

    Số người (nghìn người)

    2

    3

    4

    3

    2

    1

    0,5

    0,1

    N = 15,6

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

     

    Ta có: \frac{N}{2} = \frac{15,6}{2} =7,8

    => Trung vị nằm trong nhóm \lbrack20;30)(vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)

    \Rightarrow l = 20;\frac{N}{2} = 7,8;m =5;f = 4,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\frac{N}{2} - m ight)}{f}.c= 20 + \frac{7,8 - 5}{4}.10 =27

  • Câu 18: Thông hiểu

    Tính giá trị đại diện của nhóm số liệu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Giá trị đại diện của nhóm [150; 180) là bao nhiêu?

    Giá trị đại diện của nhóm [150; 180) là: \frac{150 + 180}{2} = 165

  • Câu 19: Vận dụng

    Tính tần số nhóm

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 20: Thông hiểu

    Điền đáp án vào ô trống

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Sắp xếp nhóm dữ liệu theo chiều tăng như sau:

    Mức lương (USD)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Mức lương trung bình (USD)

    25

    35

    45

    55

    65

    Nhân viên

    3

    5

    20

    10

    5

    Tần số tích lũy

    3

    8

    28

    38

    43

    Mức lương trung bình là:

    \overline{x} = \frac{25.3 + 35.5 + 45.20+ 55.10 + 65.5}{43} \approx 47,1

    Ta có: \frac{N}{2} = \frac{43}{2} =21,5

    Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.

    \Rightarrow l = 40;\frac{N}{2} = 21,5;m =8;f = 20,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 40 + \frac{21,5 - 8}{20}.10 =46,75

  • Câu 21: Thông hiểu

    Tính trung vị của mẫu số liệu

    Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Tính trung vị của mẫu số liệu ghép nhóm.

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

    Khi đó: \left\{ \begin{matrix}l = 140;\dfrac{N}{2} = 7,5 \\m = 3,f = 7,d = 10 \\\end{matrix} ight.

    Trung vị là: M_{e} = 140 + \frac{7,5 -3}{7}.10 \approx 146,4

  • Câu 22: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 23: Vận dụng

    Tìm trung vị của mẫu dữ liệu

    Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:

    Điểm>10>20>30>40>50>60>70>80>90
    Số học sinh7062503830241794

    Tìm trung vị của mẫu dữ liệu.

    Ta có:

    Điểm(10; 20](20; 30](30; 40](40; 50](50; 60](60; 70](70; 80](80; 90](90; 100]
    Số học sinh7062503830241794
    Tần số tích lũy70132182220250274291300304

    Ta có: \frac{N}{2} = \frac{304}{2} =152

    Nên khoảng chứa trung vị là: (30; 40]

    \Rightarrow l = 30;\frac{N}{2} = 152;m =132;f = 50,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 30 + \frac{152 - 132}{50}.10 =34

  • Câu 24: Nhận biết

    Chọn đáp án đúng

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:

    Ta có: x_{1},x_{2} \in \lbrack
5;7), x_{3},...,x_{9} \in \lbrack
7;\ 9), x_{9},...,x_{16} \in
\lbrack 9;\ 11), x_{17},...,x_{19}
\in \lbrack 11;\ 13), x_{20} \in
\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

  • Câu 25: Nhận biết

    Xác định nhóm chứa trung vị

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{2} =21

    => Nhóm chứa trung vị là [40; 60)

    (Vì 21 nằm giữa hai tần số tích lũy 14 và 26)

  • Câu 26: Nhận biết

    Ghi đáp án vào ô trống

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Số cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng là:

    12 + 23 + 17 = 52 (cư dân)

  • Câu 27: Thông hiểu

    Tính giá trị đại diện một nhóm

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 28: Thông hiểu

    Chọn đáp án đúng

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    7

    12

    Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?

    Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:

    4 + 7 + 12 = 23 (học sinh) chiếm \frac{23.100\%}{47} \approx49\%

  • Câu 29: Thông hiểu

    Tính mốt của mẫu dữ liệu

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Số học sinh

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

     

    N = 50

    Tính mốt của mẫu dữ liệu đã cho?

    Quan sát bảng thống kê ta thấy tần số cao nhất là 14 nằm trong nhóm [160; 165)

    Chiu cao (tính bng cm)

    Số học sinh

    [150; 155)

    12

     

    [155; 160)

    9

    {f_0}

    [160; 165)

    14

    {f_1}

    [165; 170)

    10

    {f_2}

    [170; 175)

    5

     

     

    N = 50

     

    \Rightarrow l = 160;f_{0} = 9;f_{1} =14;f_{2} = 10;c = 165 - 160 = 5

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 160 + \frac{14 -9}{2.14 - 9 - 10}.5 \approx 162,8

  • Câu 30: Nhận biết

    Chọn đáp án thích hợp

    Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Số học sinh có điểm dưới 7 điểm là:

    Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: 6 + 7 + 17 = 30 học sinh.

  • Câu 31: Nhận biết

    Điền kết quả vào ô trống

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng mỗi tháng là:

    5 + 12 + 23 = 40 (cư dân)

  • Câu 32: Nhận biết

    Chọn đáp án chính xác

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    21

    [15; 20)

    13

    [20; 25)

    8

    [25; 30)

    6

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    Số nhân viên trong công ty đi muộn quá 15 phút là:

    13 + 8 + 6 = 27 (nhân viên)

  • Câu 33: Nhận biết

    Tính độ dài nhóm số liệu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.

    Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.

  • Câu 34: Nhận biết

    Tìm nhóm chứa tứ phân vị thứ ba

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

  • Câu 35: Thông hiểu

    Điền dữ liệu còn thiếu trong bảng

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Hoàn thành bảng như sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    \frac{150 + 154}{2} = 152

    12

    [154; 158)

    \frac{154 + 158}{2} = 156

    18

    [158; 162)

    \frac{158 + 162}{2} = 160

    30

    [162; 166)

    \frac{162 + 166}{2} = 164

    24

    [166; 170)

    \frac{166 + 170}{2} = 168

    10

  • Câu 36: Thông hiểu

    Sắp xếp thứ tự đáp án theo yêu cầu bài toán

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Sắp xếp các nhóm theo thứ tự lần lượt là nhóm chứa trung vị, tứ phân vị thứ nhất, tứ phân vị thứ ba của mẫu số liệu:

    • [160; 165)
    • [155; 160)
    • [165; 170)
    Thứ tự là:
    • [160; 165)
    • [155; 160)
    • [165; 170)

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

  • Câu 37: Nhận biết

    Tính tổng tần số

    Tính tổng tần số của bảng số liệu:

    Khoảng thời gian

    (giờ)

    Tần số

    [0; 5)

    8

    [6; 11)

    1

    [12; 17)

    4

    [18; 23)

    2

    Tổng tần số của mẫu số liệu là: 8 + 1 + 4 + 2 = 15

  • Câu 38: Thông hiểu

    Chọn đáp án đúng

    Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là

    Ta có:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Giá trị đại diện

    12

    16

    20

    24

    28

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là:

    \overline{x} = \frac{55.12 + 78.16 +
110.20 + 45.24 + 12.28}{55 + 78 + 110 + 45 + 12} \approx
18,41.

    Vậy mức giá mua nhà trung bình là: 18,41(triệu đồng/m^{2}).

  • Câu 39: Vận dụng

    Tìm a

    Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng 19,92?

    Đối tượng

    Tần số

    [4; 8)

    11

    [8; 12)

    13

    [12; 16)

    16

    [16; 20)

    14

    [20; 24)

    a

    [24; 28)

    9

    [28; 32)

    17

    [32; 36)

    6

    [36; 40)

    4

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    6

    11

    66

    10

    13

    130

    14

    16

    224

    18

    14

    252

    22

    a

    22a

    26

    9

    234

    30

    17

    510

    34

    6

    204

    38

    4

    152

    Tổng

    90 + a

    1772 + 22a

    Biết số trung bình bằng  19,92  nên ta có:

    \overline{x} = 19,92

    \Leftrightarrow \frac{1772 + 22a}{90 +a} = 19,92

    \Leftrightarrow a = 10

  • Câu 40: Thông hiểu

    Chọn đáp án đúng

    Điểm kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có tỉ lệ học sinh giỏi thấp nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh giỏi lớp 11A là 6 học sinh

    => Tỉ lệ học sinh giỏi lớp 11A là: \frac{6}{40}.100\% = 15\%

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh giỏi lớp 11B là 4 học sinh

    => Tỉ lệ học sinh giỏi lớp 11B là: \frac{4}{39}.100\% \approx 10,3\%

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh giỏi lớp 11C là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11C là: \frac{3}{41}.100\% \approx 7,3\%

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Số học sinh giỏi lớp 11D là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11D là: \frac{3}{43}.100\% \approx 7\%

    Vậy lớp 11D có tỉ lệ học sinh giỏi thấp nhất.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo