Tính số trung bình của mẫu số liệu
Cho dãy số liệu thống kê:
,
,
,
,
,
. Số trung bình cộng của dãy số liệu thống kê đã cho là
Số trung bình là:
Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 KNTT Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm nha!
Tính số trung bình của mẫu số liệu
Cho dãy số liệu thống kê:
,
,
,
,
,
. Số trung bình cộng của dãy số liệu thống kê đã cho là
Số trung bình là:
Tính giá trị của x
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | 25 | 55 |
[30; 40) | x | 55 + x |
[40; 50) | 9 | 64 + x |
Tổng | N = 64 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là [20; 30)
Chọn phương án đúng
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Chọn đáp án đúng
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Số học sinh lớp 11A là:
Số học sinh lớp 11A là:
4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)
Xác định giá trị x và y
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Tìm mốt của dữ liệu
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Mốt của dữ liệu bằng bao nhiêu?
Mốt thuộc nhóm
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Xác định giá trị đại diện của nhóm
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Tổng | N = 100 |
Xác định giá trị đại diện của nhóm thứ tư?
Giá trị đại diện của nhóm thứ tư là
Chọn đáp án thích hợp
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu gần với giá trị nào nhất trong các giá trị dưới đây?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Đối tượng | Tần số |
|
[150; 155) | 15 |
|
[155; 160) | 10 | |
[160; 165) | 40 | |
[165; 170) | 27 | |
[170; 175) | 5 |
|
[175; 180) | 3 |
|
Tổng | N = 100 |
|
Ta có:
Khi đó ta tính mốt như sau:
Vậy mốt của mẫu số liệu gần với giá trị 164 nhất.
Tính tứ phân vị thứ ba
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 69 nằm giữa các tần số tích lũy 58 và 70).
Khi đó ta tìm được các giá trị:
Tính trung vị của mẫu số liệu
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị trung vị của mẫu dữ liệu?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [40; 60)
(Vì 21 nằm giữa hai tần số tích lũy 14 và 26)
Do đó:
Khi đó trung vị là:
Tìm tứ phân vị thứ nhất
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
[95; 105) | 9 | 9 |
[105; 115) | 13 | 22 |
[115; 125) | 26 | 48 |
[125; 135) | 30 | 78 |
[135; 145) | 12 | 90 |
[145; 155) | 10 | 100 |
Tổng | N = 100 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Tìm số trung bình của mẫu dữ liệu ghép nhóm
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Hoàn thành bảng số liệu
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Ta có:
Tốc độ | Đại diện tốc độ | Tần số |
40 ≤ x < 50 | 45 | 4 |
50 ≤ x < 60 | 55 | 5 |
60 ≤ x < 70 | 65 | 7 |
70 ≤ x < 80 | 75 | 4 |
Tìm nhóm chứa tứ phân vị thứ ba
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu trên là:
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Tính trung vị của mẫu dữ liệu ghép nhóm
Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
Tính trung vị của mẫu dữ liệu ghép nhóm.
Ta có:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
|
Số cây | 10 | 15 | 17 | 14 | 12 | 2 | N = 70 |
Tần số tích lũy | 10 | 25 | 42 | 56 | 68 | 70 |
|
Ta có:
=> Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)
Chọn đáp án thích hợp
Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Chọn đáp án chính xác
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Số nhân viên trong công ty đi muộn quá 15 phút là:
Số nhân viên trong công ty đi muộn quá 15 phút là:
13 + 8 + 6 = 27 (nhân viên)
Tìm a
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Chọn đáp án đúng
Khi nào mẫu số liệu ghép nhóm thường được dùng để thuận lợi cho việc tổ chức, đọc và phân tích số liệu?
Mẫu số liệu ghép nhóm được dùng khi ta không thể thu thập được số liệu chính xác hoặc do yêu cầu bài toán mà ta phải biểu diễn mẫu số liệu dưới dạng ghép nhóm để thuận lợi cho việc tổ chức, đọc và phân tích số liệu.
Tính độ dài nhóm dữ liệu
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?
Độ dài các nhóm là 5.
Chọn đáp án đúng
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Chọn đáp án đúng?
Ta có:
Cân nặng (kg) | Số học sinh | Tần số tích lũy |
[45; 50) | 5 | 5 |
[50; 55) | 12 | 17 |
[55; 60) | 10 | 27 |
[60; 65) | 6 | 33 |
[65; 70) | 5 | 38 |
[70; 75) | 8 | 46 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Ghép nối đáp án
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Tính giá trị của x
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | x | 30 + x |
[30; 40) | 16 | 46 + x |
[40; 50) | 9 | 55 + x |
| N = 55 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là
Tìm trung vị của mẫu số liệu ghép nhóm
Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:
|
Điểm |
Số học sinh |
|
(20; 30] |
1 |
|
(30; 40] |
1 |
|
(40; 50] |
10 |
|
(50; 60] |
11 |
|
(60; 70] |
5 |
|
(70; 80] |
2 |
Tìm trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
|
Điểm |
Số học sinh |
Tần số tích lũy |
|
(20; 30] |
1 |
1 |
|
(30; 40] |
1 |
2 |
|
(40; 50] |
10 |
12 |
|
(50; 60] |
11 |
23 |
|
(60; 70] |
5 |
28 |
|
(70; 80] |
2 |
30 |
|
Tổng |
N = 30 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Khảo sát tính đúng sai của các phát biểu
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng
. Đúng||Sai
b)
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là:
Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng
. Đúng||Sai
b)
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là:
Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Ta có:
|
Cân nặng (kg) |
Giá trị đại diện |
Số học sinh |
|
[45; 50) |
47,5 |
5 |
|
[50; 55) |
52,5 |
12 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
5 |
|
[70; 75) |
72,5 |
8 |
Cân nặng trung bình của học sinh lớp 11H là:
Nhóm chứa mốt là: [50; 55) suy ra .
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
Chọn đáp án đúng
Dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.
|
Chiều cao (m) |
[150; 153) |
[153; 156) |
[156; 159) |
[159; 162) |
[162; 165) |
[165; 168) |
|
Số học sinh |
10 |
15 |
28 |
22 |
14 |
11 |
Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là
Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là .
Giá trị đại diện cho nhóm là .
Tìm nhóm chứa mốt của mẫu dữ liệu
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Chọn đáp án đúng
Một nhóm
học sinh tham gia một kỳ thi. Số điểm thi của
học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10):
. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).
Số trung bình của mẫu số liệu là:
Xác định tần suất nhóm
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Xác định bảng dữ liệu ghép nhóm đúng
Cho bảng số liệu thống kê sau:
Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
69 | 37 | 39 | 65 | 31 | 33 | 63 |
51 | 44 | 62 | 33 | 47 | 55 | 42 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Bảng M | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng N | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 4 | 2 | |
Bảng P | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 2 | 3 | 4 | |
Bảng Q | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 3 | 5 | 2 | 4 |
Khoảng biến thiên là 69 – 31 = 38
Ta chia thành các nhóm sau: [30; 40), [40; 50), [50; 60), [60; 70)
Đếm số giá trị mỗi nhóm ta có bảng ghép nhóm
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Tính giá trị tứ phân vị thứ nhất
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
Tốc độ | Tần số |
40 ≤ x < 50 | 4 |
50 ≤ x < 60 | 5 |
60 ≤ x < 70 | 7 |
70 ≤ x < 80 | 4 |
Xác định giá trị của
?
Ta có:
Tốc độ | Tần số | Tần số tích lũy |
40 ≤ x < 50 | 4 | 4 |
50 ≤ x < 60 | 5 | 9 |
60 ≤ x < 70 | 7 | 16 |
70 ≤ x < 80 | 4 | 20 |
Tổng | N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 60)
Khi đó:
Tứ phân vị thứ nhất là:
Ghi đáp án vào ô trống
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
|
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
|
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Ta có giá trị đại diện của các nhóm lần lượt là:
Trung bình cộng của bảng số liệu trên là:
(nghìn đồng).
Tính tứ phân vị thứ nhất
Cho bảng dữ liệu như sau:
Đại diện A | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện X | Tần số | Tần số tích lũy |
[15,5; 20,5) | 5 | 5 |
[20,5; 25,5) | 6 | 11 |
[25,5; 30,5) | 12 | 23 |
[30,5; 35,5) | 14 | 37 |
[35,5; 40,5) | 26 | 63 |
[40,5; 45,5) | 12 | 75 |
[45,5; 50,5) | 16 | 91 |
[50,5; 55,5) | 9 | 100 |
| N = 100 |
|
Ta lại có:
=> Nhóm chứa là
(vì 25 nằm giữa các tần số tích lũy 23 và 37).
Khi đó ta tìm được các giá trị:
Tính giá trị biểu thức T = 2x – y
Cho bảng dữ liệu dưới đây:
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Số nhóm dữ liệu của mẫu
Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.
Khoảng chiều cao (cm) | [150; 155) | [155; 160) | [160; 165) | [165; 170) |
Số học sinh | 12 | 13 | 9 | 10 |
Mẫu số liệu trên có bao nhiêu nhóm?
Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.
Chọn đáp án đúng
Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?
11 | 23 | 31 | 17 | 24 |
38 | 37 | 7 | 12 | 5 |
8 | 15 | 33 | 19 | 27 |
Đáp án đúng là:
Tìm thu nhập trung bình của các hộ gia đình
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Tìm thu nhập trung bình của các hộ gia đình.
Ta có:
Thu nhập đại diện (nghìn đồng) | Hộ gia đình | Tích các giá trị |
50 | 5 | 250 |
150 | 7 | 1050 |
250 | 12 | 3000 |
350 | 18 | 6300 |
450 | 16 | 7200 |
550 | 10 | 5500 |
650 | 5 | 3250 |
Tổng | N = 73 | 26550 |
Thu nhập trung bình của các hộ gia đình là:
Điền đáp án vào ô trống
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
a) Khoảng biến thiên giá trị của nữ là:
Khoảng biến thiên giá trị của nam là:
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là:
Chọn phương án đúng
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Tần số |
7 |
13 |
9 |
18 |
22 |
6 |
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 6 nhóm.
Chọn đáp án đúng
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26
Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:
8 + 16 + 4 = 28 (học sinh)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: